POLYPLOIDY IN COTONEASTER II

G. H. KROON

Instituut voor de Veredeling van Tuinbouwgewassen (IVT), Wageningen

1. INTRODUCTION

A study of Sax (1954) involving 59 species and cultivars of *Cotoneaster* showed that 43 were triploid, among them 24 species. As the number of triploids found by Sax was strikingly large, Zeilinga (1964) also carried out an investigation on the chromosome number in this genus, particularly in species and cultivars under cultivation. Among the 58 origins investigated, only 2 triploids were encountered, both cultivars. By contrast all species were diploid (2n = 34) or tetraploid (2n = 68). Complementary to Zeilinga's investigation, chromosome counts were made in species which are generally not in cultivation. This paper reports the results.

2. MATERIAL AND METHODS

Seeds of various species were obtained from botanic gardens and sown out. The resulting plants, mostly 5 per seed stock, were morphologically studied for 5 seasons and identified. For the determinations use was made of the descriptions of KLOTZ (1957, 1963a, b and c) and the classification of the genus of FLINCK & HYLMÖ (1966). From those plants that could be properly identified cuttings were taken which were rooted under mist. Root tips were fixed in 1:3 acetic alcohol and stained with acetic orcein. In the herbarium of the IVT pressed material of the plants of which the chromosome number was determined is present.

3. RESULTS AND DISCUSSION

The examined seed stocks and the chromosome numbers determined in the material are shown in *table 1*. This table also includes the chromosome counts of Sax on the species involved. The 47 investigated seed stocks represent 28 species, of which 3 were diploid, 3 triploid and 23 tetraploid. From this it appears, as was also found by Zeilinga (1964), that *Cotoneaster* species are preponderantly tetraploid, only a small number being diploid.

In most species the established ploidy level differs from that found by Sax, probably because Sax determined the chromosome number on the basis of meiotic material, which, as a result of the occurrence of multivalents, may present difficulties.

In C. integerrimus two ploidy levels were found: two seed stocks were diploid and two tetraploid. In C. microphyllus three seed stocks were identified as tetra-

418 G. H. KROON

	,

IVT no	species	received as	origin (hortus)	Kroon Sax	Sax
		·			
65265	C. acutifolius Turcz.	C. acutifolius	Poznań	89	diploid
65253	C. affinis Lindley	C. affinis	Copenhagen	89	1
	C. allochrous Pojarkova	C. allochrous	Leningrad	89	1
	C. apiculatus Rehder et Wilson	C. apiculatus	Poznań	89	triploid
	C. bacillaris Wallich ex Ldl.	C. affinis bacillaris	Geneva	51	tetraploid
	C. bullatus Boiss.	C. moupinensis	Berlin, Humboldt Univ.	89	triploid
	C. bullatus Boiss.	C. bullatus floribundus	R.H.S. Gardens, Wisley	89	triploid
	C. bullatus Boiss.	C. bullatus macrophyllus	Edinburgh	89	triploid
	C. cinerascens (Rehder) Flinck et Hylmö	C. cinerascens	Uppsala	89	diploid
	C. conspicuus Comber ex Marquand	C. conspicuus decorus	R.H.S. Gardens, Wisley	%	diploid
	C. conspicuus Marquand	C. microphyllus	Antwerp	*	triploid
	C. dielsianus Pritzel	C. dielsianus elegans	Szeged	89	triploid
	C. dielsianus Pritzel	C. turbinatus	Vácrátót	89	
	C. foveolatus Rehder et Wilson	C. foveolatus	Szeged	34	diploid
	C. glabratus Rehder et Wilson	C. glabratus	Rostock	89	· 1
	C. ignavus E. Wolf	C. ignavus	Tashkent	89	triploid
	C. integerrimus Med.	C. integerrimus	Vienna	89	triploid
	C. integerrimus Med.	C. integerrimus	Lund	89	triploid
	C. integerrimus Med.	C. integerrimus	Neufchatel	34	triploid
	C. integerrimus Med.	C. integerrimus	Dyon	34	triploid
	C. karatovicus Pojarkova	C. karatovicus	Leningrad	89	
65321	C. melanocarpus Lodd.	C. melanocarpus	Odessa	89	tetraploid

							-									
tetraploid - -	diploid diploid	nioidin 	triploid tetraploid	tetraploid tetraploid	triploid	1	1 1	ı	1	ı	1	triploid	triploid	1	1	
68 68 51/68		51/68 51/68 51/68	68 51	51	89	% %	8 8	89	8 9	89 (89	89	88	51	89	89
Rostov Boekarest Tashkent	Amsterdam V.U. Ghent	Copenhagen Strasbourg	Berlin-Dahlem Greifswald	Berlin Novy Drur	Zagreb	Manchester	Palermo	Geisenheim	Szeged	Dresden	Odessa	Göttingen	Slepčany	Uppsala	Århus	Berlin-Dahlem
C. melanocarpus C. melanocarpus C. melanocarpus	C. microphyllus C. microphyllus	C. microphyllus C. microphyllus C. microphyllus	C. moupinensis C. multiflorus	C. multiflorus C. multiflorus	C. nitens	C. hookeri	C. fontanesii	C. apiculatus	C. buxifolius	C. buxifolius	C. denticulatus	C. roseus	C. henryanus	C. sikangensis	C. reticulatus	C. hupehensis
C. melanocarpus Lodd. C. melanocarpus Lodd. C. × melanocarpus Lodd.	C. microphyllus Wallich C. microphyllus Wallich C. microphyllus Wallich	C. microphylus Wallich C. × microphyllus Wallich C. × microphyllus Wallich	C. moupinensis Franchet C. multiflorus Bunge	C. multiflorus Bunge C. multiflorus Bunge	C. nitens Rehder et Wilson	C. nitidus Jacques	C. nitidus Jacques C. nitidus Jacques	C. nitidus Jacques	C. prostratus Baker	C. prostratus Baker	C. racemiflorus K. Koch	C. roseus Edgeworth	C. rugosus Pritzel	C. sikangensis Flinck et Hylmö	C. splendens Flinck et Hylmö	C. sylvestri Pampanini
65190 65228 65276												64084	65111	64048	96059	64055

420 G. H. KROON

ploid; in two other seed stocks a few triploids were found. These triploids had probably arisen from a cross with *C. conspicuus*. In *C. melanocarpus* three seed stocks were determined as tetraploid; in another seed stock some hybrids with 51 chromosome were encountered.

In our experiments, only C. conspicuus, C. karatovicus, C. lucidus, C. racemiflorus, C. melanocarpus and C. microphyllus were rather heterogeneous. In the first four species no interspecific hybridization occurred. In C. melanocarpus and C. microphyllus interspecific hybrids were found as stated. The investigated populations of other species were all very uniform. In at least part of these species the uniformity may be due to apomictic seed development. The occurrence of apomixis in Cotoneaster has been established by HJELMQVIST (1962). From practice too it is known that a number of species, such as C. horizontalis, give highly uniform progenies, probably as a result of apomixis. By contrast other species appear to hybridize readily. This is in agreement with the situation in Rosa canina where apomixis occurs facultatively in varying degrees (Kroon & ZEILINGA 1974) and numerous microspecies can be distinguished as a result of apomictic seed development.

REFERENCES

- FLINCK, K. E. & B. HYLMÖ (1966): A list of series and species in the genus Cotoneaster. *Botaniska Notiser* 119: (3): 445–463.
- HJELMQVIST, H. (1962): The embryo-sac development of some Cotoneaster species. *Botaniska Notiser* 115 (2): 208-236.
- KLOTZ, G. (1957): Übersicht über die in Kultur befindlichen Cotoneaster-Arten und -Formen. Wiss.Z.Univ. Halle, Math.- Nat. VI/6: 945-982.
- (1963a): Neue oder kritische Cotoneaster-Arten. Wiss. Z. Univ. Halle, Math.-Nat. XII/10: 753-768.
- (1963b): Neue oder kritische Cotoneaster-Arten II. Wiss. Z. Univ. Halle, Math.-Nat. XII/10: 769-786.
- (1963c): The Cotoneasters of the C. nitidus Jacques-group. Bull. Bot. Surv. India. 5 (3-4): 207-214.
- Kroon, G. H. & A. E. Zeilinga (1974): Apomixis and heterogamy in Rose rootstocks (Rosa canina L.). Euphytica 23: 345-352.
- SAX, H. J. (1954): Polyploidy and apomixis in Cotoneaster. *Journ. Arn. Arb.* 35: 334-365. Zeilinga, A. E. (1964): Polyploidy in Cotoneaster. *Botaniska Notiser* 117 (3): 262-278.