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I. Introduction

A. The question of stomatal regulation

The study of leaf anatomy and of the mechanism of the opening
and closing of stomatal guard cells leads one to suppose that the

stomata constitute the main or even the sole regulating system in

leaf transpiration. Nevertheless this supposition has been questioned
on other grounds by many authors.
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Subsequently this idea was corroborated by several other investi-

gators. Livingston (1906), expressing his results in terms of relative

transpiration to eliminate the influence of environmental factors,
found the daily maximum of transpiration occurred before that of

evaporation. He did not consider the stomata responsible for the fact

that both maxima do not coincide, because the phenomenon appeared
before

any stomatal closure was to be expected. Lloyd (1908), finding

very little correlation between transpiration rate and stomatal aperture,
concluded that the stomata influence the transpiration only at their

smallest apertures. Livingston and Brown (1912), obtaining results

similar to those of Livingston (1906), put forward the theory that,

as a consequence of the water loss from the leaf, an incipient drying
of the cell walls lining the intercellularspaces should cause an additional

resistance to transpiration. The same conclusion was drawn by Shreve

(1914) from similar experiments. Trelease and Livingston (1916),

using the porometer method, found that in the course of the day the

maximum of stomatal aperture was reached some hours after the

maximum of transpiration, so that another mechanism seemed to

play a role in regulating transpiration. Knight (1917, 1922) also

accepted a dual influence on the transpiration rate: — the incipient

drying of the cell walls would control it in case of bright weather

and wide open stomata, while at low light intensities and small

apertures the stomata themselves would be the main controlling factor.

However, not all the English and American authors were of the

same opinion. Darwin (1916) stated a reasonable parallelism between

transpiration rate and stomatal aperture. Loftfield (1921) concluded

from his experiments that the stomata regulate the transpiration to

a great extent, although in his opinion at more than 50 % of the

maximal aperture evaporation factors become more important than

the stomata.

Evidently the scepticism among the authors cited as to the controlling

power ofstomata mainly concerned the greater apertures. The question
arises as to whether this scepticism was justified.

B. The diffusion resistance

Brown and Escombe based their theoretical considerations on

Pick’s diffusion law, one expression of which is as follows: —

mjt = k
. (c—c') .0/1

{m = quantity of matter diffusing through a tube in time t,
I = length of tube,

One might say that the classical work of Brown and Escombe

(1900) on evaporation and gaseous exchange through porous films

contained one of the main sources of doubt. As is well known these

investigators stated that the transpiration in leaves of Helianthusannuus L.

was 6 times smaller than they had expected from their theoretical

considerations, so that, apart from the stomata, it would seem that

other factors have a profound influence on the transpiration rate.
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0 = sectional area of tube,

c, c' — concentration of matter at beginning and end of tube,
k = diffusion constant, the value of which depends on the quality

of the diffusing substance and of the diffusion medium and

on the temperature).

It is easily seen that this diffusion law represents an analogue of

Ohm’s law for the conduction of electricity through a homogeneous
conductor, the expression of which is

« , . ,, O v—
v' v—

v'
- = f. (v-v ). T

=

Jfjjjô
= —

[e = quantity of electricity flowing through a conductor in time t,
I = length of conductor,

0 = sectional area of conductor,

v, v' = electrical potential at beginning and end of conductor,

f = conductivity constant, the value of which depends on the

quality of the conducting material and on the temperature,
r = electrical resistance of conductor).

As a consequence we may define the diffusion resistance as an

analogue of the electrical resistance and represent it by

r = I/k. I/O.

For a number of conductors in series Ohm’s law reads

e
.

v—
v' v— v'

t
1

r-f-r' +»•'’+/•'" + ...

R

(i = strength of current,

v—v' = total potential difference,
R = total resistance of the series equalling the algebraic sum of

the separate resistances r, r', r", r'" etc.).

As Ohm’s law for electrical currents and Pick’s law for diffusion

are completely analogous in the case of single conductors, there is

no reason why this analogy should not be extended to the case of

a series of conductors. Thus, with the assumption of a steady state,
the formula for the diffusion rate through a series of tubes becomes

m . c—c' c—c'

T
— *

r+r' +r’+r"'+ ...

~

R

(i = diffusion rate,

c—c = total concentration difference,
R = total diffusion resistance of the series equalling the algebraic

sum of the separate resistances r, r', r", r'" etc.).

Our problem therefore is greatly simplified by the facts that

1. only concentrations c and c' at the beginning and end of the

diffusion path are needed for the calculation of the diffusionrate and

the intermediate ones are not required;
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2. the total diffusion resistance in a heterogeneous system may

be obtained by simple addition of the respective resistances of the

component parts. One may call this the “principle of successive

resistances”. This principle has already been applied by several

authors in different cases, e.g. by Brown and Escombe (1900) and

Renner (1910) to transpiration and by Penman and Schofield (1951)
also to carbon dioxide assimilation.

This formulation of Pick’s law, however, is only applicable if, in

the system used, the surfaces of equal vapour concentration are flat

and therefore the diffusion lines perpendicular to these surfaces are

parallel lines. These conditions are not satisfied in the case of a

circular evaporating surface lying in a flat non-evaporating plane

(fig. 1). Theoretical deductions (Stefan 1881) have shown that in

this case the surfaces of equal vapour concentration are halved oblate

spheroids (formed by rotating the upper half of an ellipse about its

short axis) and that the diffusion lines are hyperbolas, the focal

circles, respectively the foci coinciding with the margin of the evapo-

rating surface.

In this system Stefan and later Brown and Escombe calculated

the diffusion resistance to be

r = 1/fc. l/4s

(j = radius of evaporating surface). According to this formula, which

only holds for absolutely still air, the evaporation rate is proportional
to the radius of the surface (Stefan’s diameter law).

Additional resistances are introduced if a septum perforated by
circular pores is placed over such an evaporating surface (fig. 2).
In this case the total diffusion resistance will consist of three different

parts, viz: —

Fig. 1. Diffusion lines and surfaces of equal vapour concentration over a circular

evaporating surface lying in a flat non-evaporating plane.
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1. The resistance in the pores

r
v

= 1\k . IfjcSi. 1 jN

(jj = radius, 1 = depth and N = number of pores).

2. The resistance in the micro vapour cups over the individual

pores, amounting to

rdi
= 1 jk. 1/4sj. 1 IN.

3. The resistance in the macro vapour cup over the entire septum.
Its value is

r
d2

= 1/*. 1/4s2

(r
2

= radius of septum).

Therefore the total diffusion resistance of this system will be

R = r
v
+rd'

+rM
=

k
■ + 4r) + )'

If in a transpiring leaf one assumes a saturated water vapour

concentration in the substomatal spaces and pays due consideration

to the elliptical shape of the pores, it may be considered as comparable
to the above system.

Brown and Escombe developing their formulae in this way made

calculations which proved to agree fairly well with the results oftheir

experiments with models. They also tried to compute the rate of

water loss from a leafof Helianthus anmus, but due to an oversight they
omitted the evaluation of the macro vapour cup over the leaf. Conse-

quently the remaining resistance calculated was too low and. the

theoretical transpiration rate derived from it became several times

greater than the one observed. Much confusion would have been

avoided, if they had not made this small omission, which apparently
caused several authors to accept an additional transpiration resistance

inside the leaf.

Fig. 2. Diffusion lines and surfaces ofequal vapour concentration over an evapo-

rating surface over which a perforated septum has been placed.
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As Renner pointed out clearly as early as 1910, neglect of the macro

vapour cup leads to the preposterous conclusion that, if a perforated

septum be placed over a free water surface, the evaporation rate should

be increased.

The formula derived by Stefan and Brown and Escombe for the

diffusion resistance over a circular evaporating surface theoretically
applies only if the vapour cup is of unlimited size. Obviously this

will never be the case as “still air” is never quite still and the vapour

cup is always more or less disturbed by convection currents. It is

impossible, however, to evaluate theoretically the degree of this

disturbance.

Nevertheless if the total diffusion resistance is to be calculated for

leaf transpiration, it is necessary to obtain the real value of the

resistance in the macro vapour cup. Van den Honert (1948) pointed
out that this resistance may be represented by that of a hypothetical,
completely still air layer of a certain thickness over the transpiring
surface. On the outside this hypothetical air layer is thought to be

bordered by air which is continuously renewed and which has the

same water vapour concentration as the rest of the surrounding air.

Its diffusion resistance may be determined empirically, in any par-

ticular case, by measuring the evaporation rate from a free water

surface of exactly the same shape and under the same conditions as

the object. The thickness of this air layer depends on the degree of

air convection and may be calculated using the diffusion constant of

water vapour in air and applying Tick’s law. In still air this may

amount to anything from several mm to one cm depending on the

diameter of the evaporating surface.

We are well aware that a rather simplified conception of the

conditions is involved in the assumption of a rigid air layer ofa certain

thickness. Meanwhile, Welten (1933) using cobalt paper showed that

there are actually vapour cups of the same order of thickness over

evaporating surfaces, so there is no doubt that, at least in still air,

a considerable diffusion resistance outside the leaf actually occurs.

So the total diffusion resistance in a leaf may be calculated by
addition of the three successive diffusion resistances which the water

vapour has to pass, viz: —

1. The resistance in the stomata. If the latter are represented by

cylindrical tubes with an elliptical section, this resistance per cm
2

leaf surface amounts to

r, = 1/k . l/nab . l/N

(/ = length of tube,
a = half the short axis of the ellipse,
b = half the long axis of the ellipse,

N = number of stomata per cm2 leaf surface).

With variation of the stomatal aperture only the short axis is

considered to be variable. This is not far from reality.
2. The resistance in the micro vapour cups over the individual
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stomata. The total resistance per cm
2 leaf surface of these vapour

cups may be calculated by Brown and Escombe’s formula

rd
= \jk. l/4(/o6.1 jN

((/.ab = radius of the circle with an area equal to the elliptical section

of the stoma).

3. The resistance in the macro vapour cup over the whole surface

of the leaf (= the hypothetical still air layer). Its value may be

derived from the evaporation rate in the way already described.

For the sake of simplicity we will for the moment leave out of

account the resistance 2 as being of minor importance. In this case

the total resistance consists of two, mutually independent, partial
resistances. The stomatal resistance r

s
is variable and inversely pro-

portional to the stomatal aperture while that of the macro vapour

cup or still air layer, which we call A, is constant.

The diffusion rate i may now be computed

i = (c-c')l(r,+A)

(c = concentration of water vapour in the substomatal space,

c' = concentration of water vapour in the surrounding air).

As long as r
s

is large compared to A, that is with small apertures,

r
g
will practically determinethe transpiration rate and thetranspiration

will be approximately proportional to the stomatal aperture. However,
the greater the aperture, the more important A becomes and eventually
it may constitutethe main limiting factor in transpiration. Consequently
the curve representing the relation between the stomatal aperture
and the transpiration rate in still air (fig. 3) will have an initial

steep part, but will gradually flatten.

Renner as early as 1910 had already shown a clear insight into

Fig. 3. Relationbetween transpiration
rate (= i) and stomatal aperture (= 2a)
as determined by the relative values of
the resistance in the stomata (= r

s ) and

that in the still air layer (= A). The

dotted line represents the increase of

stomatal transpiration by wind in per-

cents of its value in still air.
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these principles; as mentioned earlier he was the one to detect the

flaw in Brown and Escombe’s calculation of stomatal transpiration.
He also disputed Lloyd’s conclusion that stomata have no regulating
influence at greater apertures and found a fairly good agreement

between the transpiration rates calculated theoretically and those

actually determined.

Larmor (1918) again brought forward a similar point of view. It

is surprising that the later German and Swiss workers did not use and

extend these principles. Seybold’s (1929a and b) theoretical consider-

ations therefore remained rather unprofitable. Sierp and Seybold

(1927 and 1929) determined evaporation rates through perforated
brass septa and in their opinion these did not agree with those

calculated by means of Brown and Escombe’s formula. From these

results they concluded that in practice the principles developed by
Brown and Escombe were not valid for pores of the order ofmagnitude
of the stomata. That this conclusion was a little premature may appear

from fig. 4 A and B. In this figure Sierp and Seybold’s data con-

cerning the relation between pore diameter and relative evaporation
rate are compared with the results of a theoretical analysis of their

experiments according to the principle of successive resistances (see

Appendix, part IV). The agreement is so close that these experiments

might even be used as an empirical proof of how well the foregoing

principle applies.

In his later articles Seybold (1930, 1931a, 1934) developed a

conception of transpiration resistance (see also Seybold and Füsser

1931, Bachmann 1932, Füsser 1933) which Brewig (1933) showed

to be identical with

w _

Pm&x Po

—

Ps—Po

Fig. 4. Sierp and Seybold’s curves for the relation between pore size and relative

evaporation power (drawn lines) compared with the results of our theoretical

analysis (dotted lines). A. No filter paper used. B. Filter paper
used.
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(/’max = saturated water vapour pressure at leaf temperature,

ps

= water vapour pressure at leaf surface,
p

0

= water vapour pressure of surrounding air).

Where in our terms Evaporation = (/>max —/>0 )/ra ir layer
and Transpi-

ration = (ps
— p0) layer

it is clear that, as Maximov (1931) and

Welten (1933) rightly remarked, such a conception of transpiration
resistance is nothing but the reciprocal value of Livingston’s (1906)
relative transpiration TjE, provided evaporation and transpiration
are measured under comparable conditions (same value of r airlayer ).

Welten’s (1933) formula of transpiration resistance

W
s
= WJf+W2

(W s

= total transpiration resistance,
W

1
= part of resistance that is inversely proportional to width of

stomatal slit,

W
2
= part of resistance that is independent of width of stomatal slit,

f = transpiring area)

has the advantage, as Monsi (1944) observed, of consisting of one part

varying with stomatal aperture and another independent of it. Monsi

therefore could show it to be identical with Renner’s conception of

transpiration resistance.

Huber’s (1930) experiments with perforated septa deserve special
consideration. He

gave a qualitative explanation of his results by
means of the conception of “mutual interference of pores” and

expressed his empirical “interference law” in a mathematical formula.

The conception of interference hardly lends itself to quantitative
considerations, although Verduin (1947) made such an attempt.

The mutual interference of pores is brought about by the diffusion

lines, which radiate out from the pores at first, becoming parallel

Fig. 5. Transition of micro vapour cups in adhering air layer (mutual inter-

ference of pores).
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to each other and perpendicular to the surface. It should be stressed

that there is essentially no difference between this conception and the

view developed in this paper. That section where the lines become

parallel is to be regarded as an adhering air layer forming an external

resistance (fig. 5).

Again, Huber’s curves can be explained quantitatively in terms

of successive resistances. In fig. 6 the relation between the total pore

surface and the relative evaporation rate of septa with pores of 1 mm
2

and 2000 /u
2
,

as empirically determined by Huber, is represented by
a continuous line, whereas the corresponding theoretical values are

given by a dotted line (for the calculation see Appendix, part V).
The agreement between theory and experiment appears to be

satisfactory.

The relation between stomatal aperture and transpiration rate has

been investigated by no one more carefully and thoroughly than by
Stalfelt (1932a, 1935). His curves (fig. 7) — the first of their kind

in the literature on transpiration — are steep at first, but flatten off

at greater stomatal apertures. In explaining his results Stalfelt too

based himself on the conception of mutual interference of pores.

Van den Honert (1948) pointed out that, if the transpiration rate

is mainly determined by a variable resistance in the stomata and a

constant resistance in the adhering air layer, a similar shape of the

curve is to be expected (cf fig. 3).
Monsi (1944) also found curves of this shape and tested themby

Fig. 6. Huber’s curves for the relation between relative
pore area and relative

evaporation power ofsepta with pores of 1 mm² and 2000 /
μ²

(drawn lines) compared
with the results of our theoretical analysis (dotted lines).
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Renner’s formulae. There was some agreement between theory and

experiment.
Gaumann and Jaag (1938) in their theoretical derivation of the

transpiration rate thought in terms of water vapour effusion instead

of diffusion and applied Poiseuille’s law. It is difficult to see how there

can be a gas-stream through the stomata except in anomalous cases.

C. The influence of wind

The question arises as to which relation is to be expected between

transpiration rate and stomatal aperture in wind.

The rate ofevaporation from a free water surface is greatly increased

by wind. This may safely be attributed to the partial elimination of

the diffusion resistance in the macro vapour cup or, in other words,
to the decrease in the thickness of the adhering air layer. In a leaf

where the macro vapour cup and the micro ones have been blown

away and so the external resistance has been reduced to a negligible
value, the only remaining resistance is that inside the leaf. The greater

part of it is that in the stomata which, as has been shown (page 260),
equals

r,= \jk . Ijnab . l/N.

Fig. 7. Stålfelt’s curve for the relation between relative transpiration (= T/E)
and stomatal aperture in still air (Betula pubescens).
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Accordingly in wind the transpiration rate should be directly pro-

portional to the stomatal aperture (fig. 3), at least if the wind is strong
enough to blow away all external diffusion resistances. For small leaf

areas this seems to be the case even at low wind velocities, as Stalfelt

(1932&) found that for a leafarea of 25 cm
2 wind of a velocity as low

as 0.5 m/sec is sufficient to effect a maximum increase of transpiration

(fig. 8). The experience that fairly low wind velocities suffice for

blowing dust from a smooth surface accords with this statement.

From the foregoing it will be clear that the measure of increase of

transpiration by wind is largely independent of the stomatal aperture.
The greater the aperture and so the smaller the stomatal resistance,
the greater the relative value of the external resistance which is blown

away and so the greater the effect to be expected (fig. 3). Failure

to appreciate this is certainly one of the main causes of the controversies

concerning the influence of wind on transpiration. A few opinions

may be mentioned.

Wiesner (1887) stated that transpiration may be largely increased

by wind.

Renner (1910) had found some quantitative agreement between

transpiration rates measured in wind and the respective values

calculated according to the principles described.

Seybold (1929a and b, 193 \b), however, was of the opinion that

in still air convection currents are sufficiently strong to eliminate the

micro vapour cups over the stomata so that wind could not increase

stomatal transpiration. He attributed any observed increase of transpi-
ration by wind to an increase of cuticular transpiration.

Firbas (1931) found in most cases an increase of transpiration by
wind.

The same was found by Stalfelt (1932 b, 1935). Again he was

the first (1935) to publish a curve representing the relation between

stomatal aperture and transpiration rate in wind (fig. 9). The relation

Fig. 8. Stålfelt’s curve for the relation

between the increase ofstomatal transpi-
ration by wind and the wind velocity.
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is nearly linear as Stalfelt expected, as in this case no interference

of pores would occur.

Wrenger (1935/36) concluded from her experiments that in xero-

morphous plants wind has less influence on the transpiration rate

than in mesomorphous plants and that its influence is greater with

larger stomatal apertures. These results are entirely in accordance

with our theory.
The experiments of Gaumann and Jaag (1939a and b) have the

drawback that the aperture of the stomata was considered to be a

linear function of the light intensity which according to Stalfelt’s

(1927, 1929) results is hardly justified.
Seybold’s opinion that evaporation through pores of stomatal size

is not enhanced by wind was foundedon the results of his own (1929a)

experiments with porous septa and thoseof Sierp and Seybold (1929).
However, it is subject to serious doubt if this conclusion was justified.
Similar experiments by Huber (1930) showed that the closer the

pores, the less evaporation through the septum differs from free

evaporation in wind and that the total poral area is far more important
in determining the effect of wind than the diameter of the pores at

constant poral area. These results fit completely into our theory.

A review of the literature leads to the conclusion that the work

of Brown and Escombe and of Renner seemed to open the way to

a quantitative explanation of stomatal transpiration as a diffusion

process in a system of successive variable resistances. However, the

further elaboration necessary and the completion of their principles
failed to appear, so their practical applicability was questioned and

explanations of an other kind were sought.
The purpose of the following experiments was to investigate whether

stomatal transpiration can be explained quantitatively as a diffusion

process of water vapour in air in a system of successive variable

resistances. The experiments and the conclusions to which they led

are described in the following chapters. The mathematical analysis
of the diffusion resistances and other calculations will be given in the

Appendix.

Fig. 9. One of Stalfelt’s curves for

the relation between transpiration rate

and stomatal aperture in wind (Avena

sativa).
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II. Materialand methods

A. Selection of the test plant

Zebrina pendula Schnizl. was chosen as a test plant. The reason was

that this species has relatively large stomatal pores (mean long axis =

35yw) with deep substomatal spaces (fig. 10), consequently under the

microscope the image of the underlying cells does not interfere with

that of the pores and the apertures can be measured without using
an immersion oil as recommended by Stalfelt (1929a) for Betula,
Vicia etc.. Zebrina has been used by other workers (Paetz 1930) for

the same reason.

B. Determination of stomatal transpiration in still air and in wind

The transpiration rate is expressed in terms ofgrams of water vapour

given off by 1 cm
2 leaf surface per second at a concentration difference

corresponding to 1 °/0 saturation deficit. It was determined by
measuring the loss of weight of a leaf disc during a given time on an

air damped balance.

To obtain comparable results two factors should be constant, viz:
—

1. The surface of the leaf disc, as the size of the macro vapour cup

(thickness of the adhering air layer) depends on the size of the leaf disc.

2. The temperature of the leaf disc.

A constant leaf surface was obtained by punching out discs from

Zebrina leaves with a diameter of ± 2.8 cm. The punch (fig. 11 A)
consisted of a brass cylinder (a) with a rubber stopper ( b) inside it

which was used to hold two razor blades (c) in a circular position

adjacent to the metal cylinder. The cut was made in such a way that

the mid-rib passed approximately through the centre of the disc.

Evaporation from the cut margin was eliminated by putting the leaf

disc into a holder. Fig. 11B shows this leaf holder which consisted of

(s = guard cell,

b = accessory cell, a = substomatal cavity, i = intercellular space, sp = spongeous

parenchyma, e =epidermal cell).

Zebrina pendulaFig. 10. Transverse section through a stoma of
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a short brass cylinder (d) closed at the top and with rounded edges.
The leaf disc (e) is put on top of this cylinder and then a thin rubber

ring (f) of the same external diameter is placed over it. This in turn

is covered by a brass cap (g) which is almost completely open at the

top but just covers the rubber ring. Paraffin wax (h) is used to seal the

space between this cap and the cylinder round the side. The remaining
free area of the leaf disc measured exactly 5 cm

2
.

This method had the additional advantage that the transpiration of

the upper and lower sides of the leafdisc could be estimated separately.
The cooling effect of transpiration is difficult to evaluate, therefore

we tried to eliminate it, as far as possible, in the following way: —

1. Before the transpiration measurement the leaf disc in its holder

was covered by a watch glass in order to bring it into temperature equi-
librium with its environment. The weighing began about 10 seconds

after removal of the watch glass which time can be computed to suffice

amply in most cases for filling up the adhering air layer with water

vapour and so reaching a steady state of evaporation or transpiration.
In cases of very low transpiration rates the inaccuracy introduced was

eliminated by taking the weighing times correspondently longer (on
the average 5 minutes).
2. The time of transpiration was kept as short as possible taking into

account the sensitivity of the balance. On the average it amounted

to 1 minute, but was often shorter or longer depending on the transpi-
ration rate.

3. The heat conduction towards the leaf disc was accelerated by

making the leaf holder of a good conducting material (brass) and by
putting on the balance scale a small brass pedestal fitting into the leaf

holder from below.

Fig. 11. A. Leafpunch. B. Leaf holder. Explanation in the text
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The determinations in still air were made in the closed balance

case. For those in wind a fan of the type used for hair drying (a so

called Fohn), but with the air heating coil switched off, was placed
in front of the open door of the balance case with its funnel directed

towards the leaf disc at a distance of about 12 cm. The wind velocity
over the leaf disc amounted certainly to several meters per second,

amply sufficient to blow away all external resistances (cf page 266).
The determinations described above were made with leaf discs

upside down and yielded the total (stomatal + cuticular) transpiration
rate; the stomatal transpiration rate was obtained by subtracting the

cuticular. The latter was determined after the measurement of the

stomatal aperture (see below) by inverting the leaf disc in the holder

and making a second transpiration measurement in the same way.
In so doing one takes for granted that the cuticular transpiration
rates of the upperand lower sides ofthe leafare equal and thatcuticular

and stomatal transpiration are not interdependent. These suppositions

may be questionable, but we will leave them out of the discussion

because of the relatively small values of the cuticular transpiration
rates (cf figs 13 and 14)*.

At the beginning ofeach transpiration measurement the air tempera-
ture was read on a thermometer (accurate to 0.5° C) and the air

humidity on a Haenni hair hygrometer (accurate to 1 % relative

humidity).

C. Determination of stomatal aperture
The measurement of stomatal aperture took place immediately

after the transpiration measurement of the lower leaf side. The leaf

disc was taken out of its holder and put dry on to a slide. It was

inspected under the microscope in transmitted light with a mag-

nification of 450 x. The measurements were made by means of a

calibrated ocular micrometer, the scale divisions of which corresponded
to 3.5//. Apertures were estimated to 1/10 of a scale division, i.e. to

0.35//.
As mentioned earlier the stomatal slit in this test plant gives a sharp

image against the deep substomatal space below. The measurement

was made at the middle of the slit with the microscope focussed at

its narrowest part.

There was always considerable variation ofstomatal apertures with-

in a leaf, so about 25 measurements were taken at random over the

area concerned and the mean calculated from them. These measure-

ments took about 10 minutes. Subsequently, in the same leaf disc

two measurements (one on each side of the mid-rib) were made of

the number of stomata in the field of vision at a magnification of

55 x, this number varying considerably in different leaves. Again the

mean of these two values was calculated and the number N of stomata

per cm
2 computed.

An objection against this method might be that during the expe-

* The difference between the cuticular transpiration in still air and in wind

is not at all significant.
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riment the apertures may change. In that case it would mostly be

a closure as the water content of the leaves used is generally suboptimal
(Stalfelt 1929). To check this point the values were grouped as

first, second, third etc. measurements. If any general trend had

occurred, it would appear from examination of these data. Fig. 12,

however, shows no appreciable decline with time, so the conclusion

may be drawn that the apertures did not change during the course

of the experiment.

D. Determination of evaporation in still air

This was done in exactly the same manner as the determination

of transpiration, only instead of a leaf disc a disc of wet filter paper

was put into the leafholder. A mean was taken from 14 determinations.

E. Evaluation of the experimental data

As said earlier the water loss from leaf and filter paper discs was

expressed in grams per second per cm
2

per % relative humidity deficit.

Here the supposition holds that the concentration difference of water

vapour c—c is directly proportional to the external humidity deficit.

This means that c, the concentration of water vapour at the walls of

the substomatal cavity, is supposed to correspond to the saturated

water vapour concentration at the given temperature.
This is not entirely correct since the cells have a certain suction

tension or D.P.D. (= diffusion pressure deficit). This D.P.D. tends

to lower the water vapour concentration which is in equilibrium with

Fig. 12. Mean change of stomatal aperture during a series of 27, resp. 25

measurements.
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these cells. However, as Gradmann (1928) rightly observed, this

decrease is very small. Examination of Shull’s (1939) table, which

gives the relation between D.P.D. and relative humidity, shows that

a D.P.D. value of 13 atm., probably never reached by the leaf cells

in our experiments, corresponds to a humidity deficit of only 1 %.
Therefore the D.P.D. of the leafcells could be considered as negligible
in comparison with the average humidity deficit of 35 % in our

experiments.
To make the data obtained mutually comparable two corrections

were still necessary, viz: —-

1. for the temperature variations in the experimental room;

2. for the number of stomata per cm
2 leaf surface.

In the experimental room the temperature varied between 21 and

25° C. All transpiration values were reduced to 23° C by multiplication
by the ratio between the saturated water vapour pressure at 23° C

and that at the prevailing temperature. This, of course, means a

correction for the concentration difference c—c'. The diffusion

constant k is hardly affected by these temperature differences as it

increases proportionally to the square of the absolute temperature only

— (^/Tj) 2
.

Therefore is was assumed to remain constant.

Also a correction for the numberof stomata per cm2 leaf area should

be applied, but this is possible only if the validity of the principles,
which has to be proved, is already taken for granted. Nevertheless

these corrections have been applied. In wind the transpiration rate

is taken to be directly proportional to the number of stomata per cm
2

.

In still air the correction is more difficult to calculate as will be ex-

plained in the Appendix (part VI).
Reduction of the transpiration rates to the average number of

stomata per cm
2 leaf surface has the effect of diminishing the spread

in the scatter diagrams without essentially changing their position
(cffigs 13 and 14). This is what we would expect ifour theory is correct.

III. Experimental results

Figs 13 and 14 show the experimentally determined relation between

stomatal aperture and transpiration rate. The spread of the points
will be due partly to inaccuracies of the balance since in wind a few

negative transpiration rates were found.

The general trend of the curves is in accordance with the theoretical

expectations : —
in still air a diminishing influence of the stomata

with increasing aperture, in wind an approximately linear relation.

However, the curve in wind is certainly not quite linear, being
much steeper near its origin (between apertures 0 and 2ju). In

Stâlfelt’s curves also we observe this steepness at small apertures

(cf figs 7 and 9).
Several avenues were explored in a vain attempt to find an ex-

planation of this phenomenon, until the solution was found to lie in
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Fig. 13. Relation between stomatal transpiration and aperture in still air and in

wind (non-reduced values). The dotted lines represent the corresponding theoretical
values.
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Fig. 14. Relation between stomatal transpiration and aperture in still air and

in wind (reduced values). The dotted lines represent the corresponding theoretical
values.
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the shape of the stomatal pores. In transverse section these pores are

hour-glass shaped, i.e. they have a short narrow central part which

leads on each sicie into a long wider part as is shown in fig. 15.

This configuration must be responsible for the phenomenon observed

on the following grounds: —

Through a slit of small depth (fig. 16A) the diffusion rate will

Fig. 15. Transverse section through
stomatalpore ofZebrinapendula (s = guard

cell). Averaged after several drawings
with drawing prism.

Fig. 16. Scheme of the influence of the configuration of the stomatal pore on the

relation between stomatal transpiration and aperture in wind. A. Slit of small

depth. B. Slit of great depth. C. Combination ofA and B.
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increase very rapidly with increasing width resulting ina steep diffusion

curve. The corresponding diffusion curve for a deep slit (fig. 16B)
will be much less steep. Ifwe now take a combination of the two in

such a way that the shallow part projects inward from the deeper

part (fig. 16C) the following effect will be obtained. If the slit is

nearly closed, it is the shallow part which has the greater resistance

of the two and therefore determines the steepness of the diffusion

curve. The wider the slit opens the more the curve tends to become

parallel to that of the deeper part.
The same reasoning explains why even at microscopically “closed”

stomata still a relatively large transpiration (“substomatal trans-

piration”, cf Stalfelt 1932) can occur.

The question still remained whether the experimental data could

be explained quantitatively by means of the principles outlined in

the introduction. To decide this point all diffusion resistances had to

be calculated as exactly as possible in their relation to the stomatal

aperture, viz: —

1. The resistance in the substomatal cavity* which was represented

by a spherical space; for mathematical reasons the lower part of the

stoma was included in this calculation (fig. 17).

* For the sake ofsimplicity we left out ofaccount this resistance in the introduction

and supposed the water vapour concentration in these cavities to be saturated.

Fig. 17. Schematical representation of the substomatal cavity (a = substomatal

cavity, s = stomatal guard cell, i = intercellular space)
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2. The resistance in the remaining part of the stoma (fig. 18); as

in calculation 1 the actual shape of the stomata was taken into account

as much as possible.

3. The resistance in the micro vapour cups over the stomata making
allowance for their limited size (fig. 19).

The corresponding calculations may be found in the Appendix

(parts I, II and III).

As mentioned in the introduction the fourth resistance, that of the

macro vapour cup, was determined empirically. It appeared to be

equivalent to that of a still air layer of a thickness of 0.55 cm.

Fig. 20 shows the relation between these four resistances (calculated

Fig. 18. Schematical representation of the stomatal pore.

Fig. 19. Schematical representation of a micro vapour cup of limited size.
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for 1 cm2 leaf area with a mean of 1625 stomata) and the stomatal

aperture. It is clear that the resistances 1 and 2 which both include
the narrowest part of the stoma approach infinity at complete stomatal

closure. This is not the case for the third resistance (micro vapour

cups) as this begins at the outer part of the stoma which is never

completely closed.

In still air the total diffusion resistance was obtained by addition

of all four, in wind we assumed (cf page 266) that the two external

resistances had been eliminated (fig. 20).

Knowledge of the total resistance enables us to calculate the

corresponding transpiration rate. This is done by dividing this resist-

ance into the concentration difference c—c' for 1 % saturation deficit.

The curves in figs 13 and 14 are not free-hand curves drawn through
the scatter diagrams, but the theoretical curves calculated in the

manner described. The agreement between theory and experiment is

very good, even though the theoretical curves are somewhat too low.

The cause of this discrepancy may be found either in the inevitable

errors in making approximations for the shape of the diffusion system
or in the choice of the value of the diffusion constant of water vapour
in ain According to Stefan (cf Brown and Esgombe 1900) the

theoretical value of this constant at 0° C is 0.229, yielding 0.269 for

its value at 23° C (see formula page 272), but the values determined

Fig. 20. Theoretical value of the separate and combined diffusion resistances in

relation to the stomatal aperture. The ordinate to the left applies to the separate
resistances, the ordinate to the right to the combined ones.
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experimentally deviate from it in both directions. We took Summer-

haye’s (Landolt-Bornstein 1935) experimental value of 0.282 at

16.1° C from which a value of 0.296 at 23° C was derived. As Stefan’s

theoretical value applies only to completely still air which will hardly
ever exist the choice of a somewhat higher experimental value

may
be justified.

IV. Discussion

The experimental results lead us to the conclusion that in our case

stomatal transpiration could be explained quantitatively as an evapo-

ration of water in air through a variable system of successive diffusion

resistances. Consequently, underthe experimental conditionsdescribed,

for all apertures, up to the widest encountered, the stomata were the

only physiological factor controlling transpiration.
From this it follows that no measurable resistance against water loss

was found apart from that in the gaseous phase and that there was no

evidence of any influence of incipient drying of cell walls.

This does not prove that incipient drying will never be of any

importance. One might argue that in our experiments the time of

transpiration was too short to bring about this phenomenon. It is a

pity that the experiments ofStalfelt (1932a and b ) in which the time

of transpiration was much longer do not allow an exact theoretical

analysis because of lack of data about the temperature of the leaves

and eyaporimeters.
Stalfelt himself (1932a), however, collected evidence against such

an incipient drying by proving that the rate of transpiration was

largely independent of the leaf water content. This result was confirmed

by Gregory and co-workers (1950).
Meanwhile, we do not set a great value upon this argument. The

D.P.D. values of the leafcells, even at a water loss of 39 % (Stalfelt),
are not very low in comparison with those of the air (Shull 1939,
cf page 272). It is quite imaginable that incipient drying phenomena, if

at all present, only occur at high transpiration rates, when a suffi-

cient D.P.D. gradient through the cell walls lining the intercellular

spaces occurs. Therefore, in our view much stronger evidence against
an incipient drying ofmesophyl cell walls, not mentioned by Stalfelt,
is provided by his statement that the relative transpiration rate at

given stomatal aperture is completely independent of the actual

evaporation rate which varied in his experiments from 110 to 1000 mg

per hour and
per 25 cm

2

.

Altogether relating our results to those of others we consider the

evidence for an incipient drying regulation of stomatal transpiration
rather scarce. Yet we do not deny its theoretical possibility, the more

so as it has become probable that all mesophyl cell walls are clothed

with a submicroscopic cuticle like layer (Frey-Wyssling and Elsa

Hausermann 1941, cf Lewis 1948). We are aware that this fact

renders the theoretical arguments against incipient drying of Renner

(1915) and Van den Honert (1948) less conclusive because in them
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the supposition prevails that the walls of intercellular spaces are

structurally identical with the walls between cells.

Finally it may be stressed that both Stalfelt and we used hygro-
morphous test plants, so our conclusion may hold for this ecological

type only and not for the meso- or xeromorphous type. This problem
must be solved experimentally.

To conclude we may say that there is not sufficient evidence to

throw serious doubt on the theory ofstomatal control of transpiration.

Summary

The old question, whether the stomata are the only mechanism by
which the plants can regulate their transpiration rate or whetherother

physiological factors beside the stomata play a regulating role, was

subjected to an experimental study.
To this purpose experimental transpiration rates in still air as well as

in wind were compared to those to be expected theoretically at the as

same stomatal aperture, if the stomata really are the only factor

regulating transpiration. The former were determined by weighing
leaf discs of the test plant — Zebrina pendula — before and after a

short time of transpiration, the latter by calculating in simplified
models the successive resistances to water vapour diffusion in the

leaf in their relation to the stomatal aperture. The external resistance

only, which exists in still air and which is hardly amenable to an

exact theoretical analysis, was derived from comparable evaporation

experiments. Stomatal apertures were determined by direct measure-

ment under the microscope.
On comparison there appeared to be a close agreement between

the experimental and theoretical values.

To test the applicability of the principles used in the calculation

an analysis along the same lines of thought was made of the ex-

periments on evaporation through multiperforate septa by Sierp and

Seybold (1929) and by Huber (1930). The agreement with their

experimental results was satisfactory.
The conclusion was drawn that under the conditions of the ex-

periments the stomata, up to their maximal aperture, were the only
physiological factor controlling transpiration.

APPENDIX

I. Calculation of the diffusion resistance in the substomatal

cavity

This calculation will be based on the evaluation of the diffusion

resistance in a body which is formed by allowing the thick-lined part

of fig. 21 to rotate on its axis of symmetry GF. Only the concave part
of the inner wall of this body (indicated by shading) is supposed to
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be evaporating. Between the convex bodies it is open at the upper

side.

In this body the surfaces of equal vapour concentration are supposed
to be parts of spherical surfaces the centres of which lie on the axis

of rotation GF and which all pass through the circle drawn by the

rotation of point D (E). The corresponding diffusion lines may be

constructed as shown in the figure. Their perpendicular relation to

the surfaces of equal vapour concentration is apparent from the

equality

YU2
=YX2

= YDxYE.

We are aware that these surfaces do not satisfy the Laplace equation,
but they are supposed to be a sufficiently close approximation to the

actual conditions (see page 283).
For the sake of brevity we will use the following symbols: —

AB = a arcDF =6 M'X = s(t>)
AC = p XY = u XW = w (u,v)

DC = g YC = y(u) arc XV = x(u,v)

MF = MD = r M'C= v or — v (according to the arc XZ = z ( u,v)

situation of M' on this side

or on the other side of C)

As in this case the surfaces of equal vapour concentration are not

flat we must use the following expression of Pick’s law

i = k. 7>cl7>x,

Fig. 21
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wherein i = quantity of matter diffusing through unit of area of a

surface of equal vapour concentration in unit of time.

This expression is applicable to any point in the body of rotation.

We will apply it to point X of an arbitrary surface of equal vapour
concentration.

Choosing u and v as independent variables in our calculation we

get (on the above assumption)

m i
-

k
— =k — —

'

ix
'

dv
'

7)x
'

Now we have

x = u . angle VYX (in radians)
and

sin VYX = sin (VYM'+M'YX) = = S (say),

whence

x — u. sin-1/S (if angle VYX < n/2)

or = m (TT—sin” (if angle VYX > n/2).

We are now able to compute how x changes in relation to v, as

7>x US u hS
,.r , ,n

, v ;o,

= =

7
(if angle VYX < n/2)

or = (if angle VYX > n/2)

= U'(u*-s*)(us+yv) +2™q
*

(inejthercase)
8 (u2 -\-s 2

)(uy—vs) ' 7

= --T (say).

Substitution in equation (1) yields

If now we introduce the quantity J = quantity of matter diffusing

through a surface of equal vapour concentration in unit of time, we

have

(2| J-ji.dO-k.jt.l.fv .dO.

In this expression dO represents the area described by the element

of area in the point X when rotating on the axis of symmetry GF.

In this rotation the point X describes a circle with radius w (u, v).
We can compute dO as a function of u and v in the following way.

We have

dO = dz
.
2nw = dz . 2ns

.

sin VYX = dz . 2ns
. —,
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As the quantity 0 is considered to be defined on the surfaces on

which v is constant, the changes of£ in relation to u only are of interest.

Since

2 =arc ZQ,— arc XQ_=arc ZQ— s. angle VYX,

Z changes in relation to u according

(-« •

sin"1 g)/i)w (if angle VYX < ji/2)

or = + s .

sin~ 1 (if angle VYX > ?r/2)

=D(±s.sin
~ 1 S)liu

7)S
'

7)u y i y2

‘

tm

= s_(u^)(ua+yv)+ 2uag*
e . ther

y {u2+a2
)(uy—vs )

rp
~

y
’

Consequently

dO —T. -

.
2ns

. .

du.

y u
2 -\-s 2

Substitution in equation (2) yields

t 7
C s 1 de

m a „ uv+ya ,J = k. \ - .T.2ns
. . , . .

dit
JuTdv y u

iJ
\-8

z

„ , f S
3

MV + WS de
J

(2a) = ink ■ —
■ ,,

,
.
-r-.dw.

' ' J uy tt
2 +s 2

av

Denoting
S

3
UV+ J/S

uy
'

tt
2
+s

2

by f{u,v) for convenience’ sake this expression runs

(26) J = 2nk .$f{u,v) .dc/dv .du.

It can be demonstrated* that if the spherical surfaces considered should be such

that one function c exists dependingon v only and satisfying the Laplace equation,
then f{u,v) can be written as m(u)/n{v) and c satisfies the equation

dc/dv = x . n(v).

In this case equation (2b) passes into

J = 2nk
. j" .

x .n(v) .du

= 2nk .x.$m(u). du,
whereas

(c —c') = x
. J n (v). dv.

* The author owes the arguments printed in small type to Dr H. R. van der

Vaart who was kind enough to test the relationship between our surfaces and the

Laplace equation.
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So

/o\
c—c'

p
Sn(v).dv

( 1
J 2jtk.Sm(u).du'

However this condition is not complied with. Accordingly the function f{u,v)
can not be split up into a function of u and a function of v. So the method used in

the following is not correct from a mathematical point of view, but approximate.
If the condition described is satisfied, equation (3a) resulting from this method

(see below) reduces to equation (3), as one can easily see by replacing J{u,v)
in (3a) by m(u)/n(»).

Differentiating (2b) with respect to u we find

g=2nk.f(u,v)
d

£
or

dc
_

J_ 1 dj

dv 2nk
'

f{u,v)
’

du
'

Acting as if dJjdu did not depend on v we find on integration

,
_

1 dj Ç dv

C C
2nk

'

du
' J f(u,v)

’

— OO

whence

dj
T

c—c

-r~
= Ink

.

—

.

du yr'—q 2

r dv

J f(UyV)
— OO

If c—c' were independent of u it would follow that

+ oo

J = 2nk.(c-e') .
f -=£*■

C dv

J j f(u,v)
a —oo

and that

/o„\ x>
c~c

' (2nk)-i
( 3«) R = — =

Tcô ■
» du

r dv

J J f(u,v)
a —oo

Now we use this expression as an approximation to R supposing
that f(u,v ) can be approximated closely enough by a quotient
m(u) ln(v).

As

r uy m
2
+s

2

j uy
2

. angleFMD u
2
y

J s
3 *

uv+ys q
3

sq
2

— OO
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and

+ oo

f ££l du =

1
log

r>b+aq

J suy
2

. angleFMD + qyu
2 ' angleFMD ° e ab+aq

a

the value of R becomes

‘ angleFMD
_

ab+aq

If v varies between finite values, e.g. from fV2
— q

2 to /r"2
— q

2

the expression for the diffusionresistance becomes, as will be easily seen

(5 x R,
_

angle MDM'

' '

oil
tt'p . angle MDM' -f(r' —r)qa

4

n ‘®‘ rr'o. angle MDM'+(r' —r)qa

Now in order to realize as close an approximation as possible to

the actual form of the substomatal cavity (cf fig. 10) two of such

systems (fig. 22) were connected in series, the lowest part of the

stomatal slit being included in one of them. The measurements

indicated in the figure have been adapted as well as possible to the

actual values.

Fig. 22
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Computation of the diffusion resistance in these systems proceeds
as follows.

System I

The appropriate formula for this system is (5) because v varies

between finite values (from MH to NH). Thus we have

-,-, angle MBN

Kl =

BM. BN. angleMBN. CH +(BN—BM ).BH. AC
'

Tik .U
. °g e

bm bn . angleMBN. AC +(BN—BM). BH. AC

Let d be the radius of a circle the area of which equals the area of

the stomatal slit in the narrowest part {nd2
= n. half long axis, half

short axis of the ellipse), then we have

BM = 50, BN = EN = CH = d+ 4, AC =

50

,

f50 2—(d +5) 2

BH = Ÿ{d+ 4) 2-AC2 (as HN = CE = AC)

and angle MBN = angle (MBH — HBN) = sin" 1
2,

, . BH( 1/502—BH2—HN)
WhCrem 2 =

5Ô(d +4)
•

As d is the only variable in each expression R
l can be computed

for various stomatal apertures.

System II

The appropriate formula for this system is (4) because v varies

from NK to — 00. Thus we have

j, angle LNT

Kn ~

„ , T ,
GK.arcLT+GE.LK

*

fert.LK.log,
QE arcLT+QE LK

Expressing again the various quantities in this equation as functions

of d we get

LK = \d2~rHd, GK = d+4, arc LT = (d +4). angle LNT

4
and angle LNT = cos"

1
-3—7.0 d+ 4

So R
u

can be calculated as a function of d.

Addition of and R
u yields the total resistance of the substomatal

cavity (including the lowest part of the stoma) and hence this resistance

can be calculated for various stomatal apertures (see fig. 20).

II. Calculation of the diffusion resistance in the stoma

The schematic representation of the stomatal slit which we used

in this calculation is shown in fig. 23. Four systems can be distinguished
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indicated in the figure as III, IV, V and VI, the undermost part of

the slit having been included in the substomatal cavity. The measure-

ments approximate as closely as possible to the actual values.

System III

Here we have

p
=

i A.
=
l 1.5

111
k'nab k

'

3.14 x 17.5 X a

'

System IV

In estimating the resistance in this system (fig. 24) we may proceed
in the following way.

As an approximation let us suppose that c depends on h only

[h represents the length of the perpendicular to the basal plane) and

so the surfaces of equal vapour concentration to be flat and perpen-

dicular to the axis of the stomatal slit, then we can write

i = —k. 7ia
h
b

. dcldh

Fig. 23
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or

—i dh —i dh

k.nb' a
h

k.nb
'

a-\-h.cot a

*

Integration of c with respect to h (h varying from 0 to (a'—a) .

tan a)

yields

Thus the diffusion resistance in this system amounts to

p
=

logt(«7«)
=

Ioge (a+4)/q
IV fc.7t6.eota fc X 3.14 x 17.5 X0.58

’

Some loss of accuracy results from the use of the approximation
for the shape of the surfaces of equal vapour concentration. The

extent of this depends on the size of angle a and as in this case its

minimal value is 60° deviations will not be large.

System V

Here we have

p =

l K__
=

l 2.8

v fc
'

7t(a+4)6 fc
’

3.14 x 17.5 x (a+4)
’

System VI

Applying to this system the same formula as was developed for

system IV we find

P
loge(a'la") Iogc(q + 4)/(a + 2)

VI
fc.ji6.cota fc X 3.14x 17.5 X0.58

‘

The algebraical sum of these four resistances gives the total resistance

in the stoma for a given value of a (see fig. 20).

Fig. 24
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III. Calculation of the diffusion resistance within a vapour

SHELL OF LIMITED SIZE

The shape of the surfaces of equal vapour
concentration extending

over a perforated septum will be very complicated from amathematical

point of view. As an approximation we used the schematical repre-

sentation shown in fig. 19.

The formula of Brown and Escombe for the resistance of a vapour

shell (cf page 258) must be adapted to meet the special case where

the size is limited. The following method may be used.

Surfaces of equal vapour concentration (fig. 25) at a distance of

say 5r from the evaporating surface (r = radius of this surface) may

be regarded as spherical which implies the equality of the vapour

concentration gradient at all points of these surfaces. Thus we have

i = —k. 0
. dcjds = —k. 2ns2

. dc/ds

(s = radius of the surface considered).
Integration of c with respect to s varying from s' to + oo) gives

the fall in vapour concentration and thus the resistance between this

surface and the surface at infinity

S'

_

—i r ds
_

1 i
C

k. 2ji J s
2 k

’

2ns' ’

+ 00

therefore

P i
1 l

k ‘ 2ns'
’

Reducing the resistance in the vapour shell of unlimited size by
this amount we get the resistance in the shellof limited size (system VII)

Fig. 25
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The actual value of s' depends on N = number of pores (stomata)

per cm2 according

ns' 2
= l/N

and the quantity r is related to a by the equation

nr
2

= n(a +2)b = 3.14x I7.5x (a +2),

r being the radius of a circle the area of which equals the area of the

stomatal opening at the end of the slit.

Here the supposition prevailed that the formula for the vapour shell

resistance over a circular evaporating surface equally holds for an

elliptical surface of the same area. According to Stefan (1881)
deviations will not be large as long as the eccentricity of the ellipse
is small. At narrow stomatal slits this requirement is not complied
with, but in this case the resistance in the shells is only a small fraction

of the total resistance, so the inaccuracy introduced will be negligible.
Further it might be questioned whether the thickness of the still

air layer (system VIII) should not be reduced by 2/3 of the height
{s') of the vapour shells. In our experiments, however, this correction

could be omitted on account of its smallness (± 2.5 %).
The value of the resistance in the micro vapour cups at various

stomatal apertures is given in fig. 20.

IV. Theoretical analysis of the experiments on models by

Sierp and Seybold (1929)

In the experiments which they made on the evaporation through
multiperforate septa Sierp & Seybold used brass boxes covered by

perforated thin brass sheets. The diameter of these boxes amounted

to 45 mm, their height to 21 mm and the thickness of the brass sheets

to 20//. These sheets had a perforated area of 20 X 20 mm. The total

area of the pores was constant (3.14 mm
2 ), but the radius of the pores

varied from 1000// to 5/u (boxes I—V). Another box had a

cover without pores, but with a square opening of 20 X 20 mm.

These boxes were filled with water up to 7 mm below the cover

and allowed to evaporate under a bell-glass under which P
2
0

5 (at
the bottom) maintained a constant gradient of vapour concentration.

The evaporation power of a box was measured by its decrease in

weight after a given time.

Fig. 4 shows the results obtained by the authors (drawn from table

3, page 249), the abscissa representing the diameter of the pores, the

ordinate the evaporation power of the box in question in relative

units. The evaporation power
of the additional box is taken as 1.0.

The authors tested the theoretical analysis of these results based

on the formulae of Brown & Escombe and their interpretation was

that the theoretical and the experimental data did not agree. From

this they concluded that these formulae hadno practical valueespecially
for pores of stomatal size.
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This conclusion appears to be unfounded. The authors took the

evaporation power of the box containing the largest pores as a unit

of reference and expressed the other ones in terms of it. However,
the greatest deviations are to be expected from the largest pores as in

this case the macro vapour cup
and the micro ones can no longer be

treated as separate systems. So this lack of agreement is not surprising.
How closely indeed the actual and calculated values can agree

will be shown for some of their experiments.
When no filter paperwas used four diffusion resistances were placed

betweenthe evaporating surface and thefree (i.e. circulating) air, viz:—

1. The resistance between the evaporating surface (area =

7i X 2.252
= 16 cm

2 ) and the perforated part of the brass sheet

(area = 4 cm
2 ).

Simplifying matters by taking an average value of 14x16=8 cm
2

for the area of the cross section of this part we compute the following
resistance

P
1 0.7 0.088

k- 8
~

k ■

2. The resistance in the pores which had the constant value of

„
I 0.002 0.064

k '

3. The resistance in the micro vapour shells under and over each

pore. We will leave out of account the limited size of these shells

because of their relatively great mutual distance. Doing so we compute
their resistance as

Tf
_1 1 1

3 k ’ JV
'

2r

[N = total number of pores in the sheet,

r = radius of pores).

From this formula we get the following values of this resistance

for the several boxes:—

Box I {N —
1 ,r = 1 mm) R

3
=k -1

.

5

Box II {N = 400,r = 0.05 mm) R
3

=k" 1
.

0.25

Box HI ( N = 1600,r = 0.025 mm) R
3

=k" 1
.

0.125

Box IV {N = 10000,r = 0.010 mm) R
3
= k" 1

.
0.05

Box V {N = 40000,r = 0.005 mm) R
3
= H, 0.025

4. The resistance in the macro vapour shell (still air layer) extending
over the whole perforated area.

As conditions of still air will have been realized very closely under

the bell-glass use of Brown & Escombe’s formula seems to be justified

p
111 yoi 0.221

Ki ~

k
•

4«
-

k
•

8
~

k

{s = radius of circle the area ofwhich equals the area of the perforated
part of the sheet).
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The diffusion resistance of the additional box consists of the

resistances and R
t only.

Now taking the evaporation power of box Q
4

as a unit we can

compute the evaporation power of the other boxes (I—V) by the

formula

El
_

i?l + i?2-(-+/?4

Thus we find the following values

Box I E = 0.06*

Box II E = 0.50

Box III E = 0.62

Box IV E = 0.73

Box V E =0.78

In fig. 4A these results are compared with the experimental data

(taken from table 3, page 249). The agreement appears to be rather

close.

Computing the ratio Q4/IV and we find 1.37 and 1.28

respectively, whereas the authors record

Q.4/IV = 1.29 (table 3, page 249) and 1.39 (mean value from tables

5-8),

Q, 4/V = 1.32 (table 3, page 249) and 1.20 (table 8, page 252).

Similarly calculating the ratio between the evaporation power of

box Q_j (square opening 1 X 1 cm) and box IVa (same number and

size of pores as box IV, but on an area of 1 X 1 cm) we get 1.18,
whereas Sierp & Seybold actually found a ratio of 1.26 (table 3,

page 249) and 1.20 (page 253). The theoretical values of the ratios

Q-r/Qa and IV/IVa are somewhat lower (11 % and 22 % respectively)
than the experimental ones (table 3, page 249).

When wet filter paper was attached to the lower side of the septum
three resistances only are to be taken into account, viz:—

1. The resistance in the pores (i?
2
) which has the same value as in

the first case.

2. The resistance in the micro vapour shells ( R
3
). As these shells are

now present at the upper side of the pores only this resistance amounts

to half the value it had in the first case.

3. The resistance in the macro vapour shell (f?4 ) having again the

same value as above.

The diffusionresistance of box Q^4 now consists of resistance R
t only.

Consequently the relative evaporation power of boxes I—V is given
by the formula

L'
__

Et

+ +-^4

*
Strictly speaking our formula for E is less correct for these large pores (cf page

291), so not too great a value should be set on this number.
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Thus we find

Box I E = 0.08*

Box II E = 0.54

Box III E = 0.64

Box IV E
= 0.71

Box V E = 0.74

In fig. 4B these results are compared again with the experimental
data (taken from table 11, page 255). The agreement is very close

indeed.

Comparison of the theoretical and experimental values of the ratios

Qj/IVa, 0,4/Q.x and IV/I\a yields in this case

theoretical value experimental value (table 11, page 255)

Oi/IVa 1.20 1.29

O4/O1 2.00 2.20

IV/IVa 1.71 2.08

In the main the lack of agreement between theory and experiment
is considered to be much too small to justify the authors’ doubt about

the practical value of Brown & Escombe’s principles for pores of

stomatal size.

V. THEORETICAL ANALYSIS OF THE EXPERIMENTS ON MODELS BY

Huber (1930)

Huber attacked the problem of evaporation through perforated

septa by studying the influence of pore number at constant pore size

on the one hand and of pore size at constant pore area on the other.

For that purpose he used the following perforated metal sheets (see
table I).

The evaporating surface consisted of wet filter paper attached to

the lower part of the septum. Evaporation took place into the free

air of a room.

� See note on page 292.

TABLE I

Perforated septa used by Huber

Pore

size

(= O)

Diameter

ofpores

(=2r)

Number

of pores

(=JV)

Perfo-

rated area

i=P)

Relative area

of
pores

{=A)

Thickness

of septum

{=d)

1 cm
2 11.3 mm 1-4-9-16-25-36-

49-64

100 cm
2 0.01-0.04-0.09-

0.16-0.25-0.36-

0.49-0.64

0.6 mm

1 mm
2 1.13 mm 25-100-400-625-

1090-76»0-2500

100 cm
2 0.0025-0.01-0.04-

0.0625-0.109-
0.16- 0.25

0.13 mm

2000 n* 50 n 400-3600-6400-

10000

4 cm
2 0.002-0.018-

0.032- 0.05

0.02 mm

80 n* 10 n 2500 1 cm
2 0.002 0.02 mm
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Relative evaporation rates were determined using as a base of

reference the evaporation power of a septum with a central opening
of the same area as the perforated part of the septum in question.

The results are shown in fig. 6 the abscissa representing the relative

pore area, the ordinate the relative evaporation power.

The question arises as to whether these results can be explained

quantitatively on the principle of consecutive resistances.

Three diffusion resistances are to be taken into account, viz:—

1. The resistance in the pores amounting to

d
1 d

1 k' N.O'

2. The resistance in the micro vapour shells. Using the formula for

shells of limited size we get

jf
_i 1 i/i i \

2 k
'

N Ur 2ns) k' N\4r yp/nN /

=

1 1/1 _V^\
k

'

N \4r 2jir)'

3. The resistance in the macro vapour shell (still air layer) extending
over the whole perforated area. As in the free air ofa room conditions

of still air will not be realized sufficiently to justify the use of Brown

& Escombe’s formula we must write

p
I o

R
*

=

k-P

(a = thickness of hypothetical still air layer).
Thus the total resistance is computed as

Rf —

=

i /_±_ i '1 ,«j
k

'

W.O 4r.N 2nr.N P)

1 ( d , nr r )l~A x a. A \
=

k
• Ixp + 4A7P

~

2A7p + A^p)

= l-j^p{M+nr~2r\A+±a.A).

Leaving out of account the thickness of the septum we compute
the resistance of the reference septa as

p
_

l °

Rr
k‘ P

•

So the relative evaporation rates are given by the formula

p
a/p

rpi —

(4 —2r|/3+4o.T)/44.P

4a.A

4d-\-nr— 2r l^A-\-4a.A
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All quantities in this formula are known with the exception ofa.

The drawback is that this quantity a can be computed only from the

experimental data themselves. However, the result of this computation
can be made plausible on grounds to be discussed.

The experimental relative evaporation rates of the sheets indicated

in italics oftable I were substituted in the formula for Era to calculate

a. Thus we found a = 1 cm for the sheet with a perforated area of

100 cm2 (0=1 mm2) and a = 0.3 cm for the sheet with a perforated
area of 4 cm

2 (0 = 2000 /<
2).

The resistances in the adhering air layer then become 0.01 /k
(1 mm

2-septum) and 0.075/k (2000 /a
2—septum). According to

Stefan’s diameter law in perfectly still air the ratio between these

resistances would be 1 to 5, whereas in strong wind their ratio would

approach to 1 to 25, so it may be seen that the ratio 1 to 7.5 is not

unlikely for the prevailing conditions.

The relative evaporation power of the 1 mm
2— and 2000 /i

2—

septa at varying pore
number and consequently varying pore area as

calculated with the aid of the mentioned values of a have been

plotted graphically in fig. 6 (dotted lines). Because our formula is not

valid for the largest pores as in this case the macro vapour shell and

the micro ones can no longer be treated as separate systems, the

1 cm
2-septa were not included in the calculation.

There appears to be a very close agreement between the shape of

the theoretical and experimental curves, though there are some

numerical differences.

The large value (0.6) Huber found for the relative evaporation rate

of the 10 can not be accounted for unless we assume the

adhering air layer to be of an unplausible thickness. Possibly interfering
effects (capillary attraction of water by the pores? ) are responsible
for the discrepancy.

VI. Calculation of the correction for the number of stomata

per CM²

In still air only a fraction of the total diffusionresistance is inversely
proportional to the number of stomata per cm

2

,
viz the sum of the

resistances of the substomatal cavity, of the stomata and of the micro

vapour shells.

Putting this sum (computed for N = 1625 = the average number

of stomata per cm
2 in our experiments and for a given stomatal

aperture) = R
v

and putting the resistance in the still air layer per

cm
2
= R

c
we have

wherein R
t
= total resistance per cm

2 for N = 1625 and for the

aperture concerned.

For a leaf with N' stomata per cm
2 the total resistance per cm

2 for

the same stomatal aperture becomes

R't = (1625 IN’).RV
+R

C .
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Consequently

R't (1625/N').RV+RC
T

Rt Rt T-
’

wherein T = transpiration rate reduced to N = 1625 and T = em-

pirical transpiration rate for N\ stomata per cm
2

.

Thus
rp rjv

(162 5/N ). R
v -)-R

c
~

Rt

The value ofR
v,

R
c
and R

t
can be read from fig. 20 for any stomatal

aperture, so T can be computed.
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