Remains of Tapirus Brisson, 1762 (Mammalia, Perissodactyla) from the Pleistocene of the southern North Sea

Bram W. Langeveld 1,2, Cees Laban & Dick Mol 1

Received 27 January 2022, revised version accepted 19 April 2022

Tapirs are odd-toed ungulates with an extensive fossil record since the early Eocene. Here, we present their first records from the North Sea. An Early Pleistocene m1/m2 dex. of Tapirus arvernensis Croizet & Jobert, 1828 from the beach of Maasvlakte 2 and an m3 dex. of Tapirus sp. from the beach of Hoek van Holland (both near Rotterdam, The Netherlands) were recovered by citizen scientist fossil collectors from dredged sediments deposited on these beaches. The original provenance of the Maasvlakte 2 specimen is a sand dredging pit in the North Sea reaching into Pleistocene deposits, just offshore Rotterdam (coordinates c. 52.01, 3.92), while the original provenance of the Hoek van Holland specimen remains somewhat unclear, but must have been situated in the southern part of the North Sea. These tapir records and a specimen from the Westerschelde reported earlier suggest a previously reported and contested occurrence of Mammut borsoni (Hays, 1834) from "the Scheldt" in fact may originate from the Westerschelde. These records are among the most northern records of Tapirus and demonstrate the scientific value of these nourished beaches and the cooperation with the citizen scientist fossil collectors that collect (i.e. save them from destruction through exposure) fossils there.

KEY WORDS: beach nourishments, citizen scientists, Early Pleistocene, Hoek van Holland, Maasvlakte 2, Mammut borsoni, Tapiridae, Tapirus arvernensis

Introduction

Tapirs (Perissodactyla, Tapiridae) are odd-toed ungulates with an extensive fossil record since the early Eocene (Prothero, 2009). With four well established extant species (Medici, 2011) and a fifth controversial one (Cozzuol et al., 2013; Ruiz-García et al., 2016), modern tapirs are large (up to 400 kg) solitary animals that live in dense tropical (lowland and mountainous) forests, typically in riparian forests near marshes, lakes and streams. They are well suited to move through thick undergrowth. Tapirs are browsers of leaves of a wide variety of plant species, and also consume buds, twigs, bark, flowers and fruits of low-growing terrestrial plants and occasionally aquatic plants. Although currently restricted to the tropical regions of South America, Central America and Southeast Asia (Medici, 2011), the fossil record shows tapirs of the genus Tapirus Brisson, 1762 were widely distributed in North America and the Old World in the Neogene and Pleistocene (Kurtén, 1968).

Several genera and species of Tapiridae are known from the late Miocene of Europe (Guérin & Eisenmann, 1994): Tapirus balkanicus Spassov & Ginsburg, 1999, T. priscus Kaup, 1833 and T. antiquus Kaup, 1833 and Tapiriscus pannonicus Kretzoi, 1951. Tapirus jeanpiveteaui Boeuf, 1991 is known from the Pliocene (Boeuf, 1991). Tapirus

arvernensis Croizet & Jobert, 1828 is the most common species in the Pleistocene of Europe. It was described from Perrier-Les Étouaires (Puy-de-Dôme, France) based on an adult mandible, a fragment of a juvenile mandible, an incisor, an atlas and an upper molar (Croizet & Jobert, 1828). The species was not dissimilar from extant *Tapi*rus (Kurtén, 1968) with an estimated total length of 1.8 to 2 m, a shoulder height of 80 cm and a weight of over 200 kg (Guérin & Tsoukala, 2013). Its fossils are known from MN 13 (Miocene, probably latest Turolian) until MNQ 18 (Early Pleistocene, Late Villafranchian) and sites are widely distributed in south-central Europe, but much less common in the north-western part of the continent (Gómez de Soler et al., 2012; Guérin & Tsoukala, 2013). Fossils are quite common in various sites in France and Italy, including (partial) skeletons (e.g. Rustioni & Mazza, 2001; Lacombat et al., 2008; Gómez de Soler et al., 2012). Quite abundant material is also known from Wölfersheim (Germany) from a fauna with Anancus arvernensis (Croizet & Jobert, 1828) and Mammut borsoni (Hays, 1834) (Tobien, 1952), while fewer, much more rare remains are known from the Pliocene to earliest Pleistocene of the Red Crag Formation in Suffolk, United Kingdom (Newton, 1891) and also from The Netherlands.

The best preserved Dutch remains are those from Maalbeek near Tegelen, province of Limburg (Kortenbout van

¹ Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA Rotterdam, The Netherlands

² Corresponding author: langeveld@hetnatuurhistorisch.nl

der Sluijs, 1960; Mol et al., 2008). Furthermore, one specimen, tentatively identified as a dp4 of Tapirus arvernensis, was recovered ex situ at Baarland (province of Zeeland) from sediments dredged from the Westerschelde estuary and tentatively dated as late Pliocene (Goetheer, 2013). Unpublished teeth and post-crania mentioned as Tapirus arvernensis by Mol et al. (2011), not identified to genus by Peters & De Vos (2013) and mentioned as Tapirus sp. by Peters (2013) are also known from the former sand dredging pit 'De Kuilen' (Mill-Langenboom, province of Noord-Brabant), yielding ex situ Miocene to Pliocene material. Recently, the beaches of Maasvlakte 2 and Hoek van Holland (both near Rotterdam) yielded two new fossil teeth of tapir, originating from the southern North Sea. Here, we describe these specimens, adding to the poor Dutch record of *Tapirus*.

Geological setting

The publicly accessible beaches of Maasvlakte 2 and Hoek van Holland were artificially created from/extensively nourished with dredged sediments, respectively. The original provenance of the sediment used for Maasvlakte 2, and hence the original provenance of the Maasvlakte 2 Tapirus specimen, can be traced with certainty to the large underwater sand dredging pit (coordinates c. 52.01, 3.92) just offshore the Rotterdam harbour (Reumer et al., 2010; Kuitems et al., 2015), just south of the Eurogeul, a fossiliferous dredged navigational channel that traditionally yields Late Pleistocene and Early Holocene material (Mol et al., 2006). This fauna is also recovered from Maasvlakte 2, but the site additionally yields abundant terrestrial mammal material from the Early and/or Middle Pleistocene, due to deeper sand dredging (up to 20 meters below seafloor) into older deposits (Busschers et al., 2013; Mol & Langeveld, 2014, 2016; Kuitems et al., 2015). The dredged sediments consist of some sediment from the Holocene Naaldwijk Formation, and predominantly fluvial deposits from the Late and Middle Pleistocene of the Kreftenheye Formation and late Early or Middle Pleistocene deposits of the Urk Formation or Waalre Formation (Busschers et al., 2013).

The beach of Hoek van Holland has a more complex history. It was first nourished in 1971 with sediments that originated from the (original, or first) Maasvlakte (not to be confused with the recent extension, known as Maasvlakte 2), from the port of Rotterdam, just to the south of Hoek van Holland. These sediments were dredged from the Maasvlakte to create shipping lanes and docks. The sediments consist of a mix of local Late Pleistocene and Holocene terrestrial to marine sediments as well as sediments that were first dredged offshore of Great Yarmouth (Norfolk, United Kingdom). These foreign sediments were deposited at Maasvlakte to facilitate construction but were later partially removed and thus deposited on the beach of Hoek van Holland. They consist of Early to Middle Pleistocene marine and estuarine deposits of course

sand and gravel. After this early nourishment, the beach was repeatedly nourished with sediments from just offshore of Hoek van Holland, generally from the Eurogeul area and of Late Pleistocene to Holocene age. Fossil finds at Hoek van Holland are dominated by that Late Pleistocene and early Holocene material (Langeveld, 2013a) and are comparable to the fauna from the Eurogeul area (Mol et al., 2006); material from the Early/Middle Pleistocene occurs much more rarely and could be of local reworked origin (Dieleman, 2013; Langeveld, 2013b), but given the long and diverse history of sand nourishments on this site, the original provenance of the Hoek van Holland Tapirus specimen remains unclear.

Institutional abbreviation

NMR Natural History Museum Rotterdam, Rotterdam, The Netherlands.

Material and methods

Our material consists of two molars that were recovered ex situ from the beaches of Maasvlakte 2 on 21 February 2020 and Hoek van Holland on 14 March 2010 (both near Rotterdam) by citizen scientist fossil collectors A.L.M. Kolder and D. Chrispijn, respectively. The Maasvlakte 2 specimen is kept in NMR with catalogue number NMR999100161339 (Moeliker & Langeveld, 2021). The Hoek van Holland specimen is kept in the private collection of Harold van der Steen (Oss, The Netherlands), catalogued as GL57B; a cast is kept as NMR999100007475. Measurements were taken at the base of the crown with Vernier callipers at 0.1 mm accuracy.

Results

Maasvlakte 2 specimen

The tooth (Fig. 1) is of a simple bilophodont morphology with two distinct lophs, consisting of a protoloph connecting the protocone and paracone and a metaloph connecting the hypocone and metacone. There is no ectoloph. Cingula are present on both the anterior and posterior sides of the tooth. The cingula show contact facets from other teeth on both the anterior and posterior sides of the specimen. The tooth preserves the bases of four roots that have broken off. It shows very light wear from use by the animal, with the largest dentin basin (width 3.7 mm) developed on the hypocone, followed by the protocone (width 2.4 mm). On the metacone the dentin basin is c. 1 mm and on the paracone the enamel is intact. The length of the tooth is 22.0 mm; the width of the anterior loph is 17.8 mm; posterior loph width is 16.4 mm. The enamel is black in colour with some subtle hints of very dark red; the roots are very dark brown in colour with some reddish specks of iron oxide.

The simple bilophodont morphology allows identification as tapir (Hillson, 2005), while the elongated shape shows it is from the lower jaw (Hohl et al., 2020). Ob-

Figure 1. *Tapirus arvernensis* Croizet & Jobert, 1828, m1/m2 dex., beach of Maasvlakte 2, Rotterdam, The Netherlands, 21 February 2020, *leg.* A.L.M. Kolder, collection Natural History Museum Rotterdam NMR999100161339. A occlusal, B buccal, C anterior, D posterior, E lingual view.

servations on a skeleton of a recent juvenile Tapirus terrestris (Linnaeus, 1758) (NMR99900000961) and on material illustrated in Schap & Samuels (2020: fig. 3) show that the protoloph and metaloph connect the posterior parts of their respective cones and arch slightly towards the posterior and that the lingual side of the teeth in occlusal view is straight, while their buccal side is asymmetrical in occlusal view. This indicates our specimen is from the right mandible. As the anterior loph is wider than the posterior loph, our specimen is a molar (Hohl et al., 2020). Based on the contact facets on both sides of the tooth, the m3 can be ruled out, thus our specimen can be identified as an m1 or m2. Based on its size it can be assigned to Tapirus arvernensis, as Croizet & Jobert (1828) gave 21 and 22 mm for the m1 and m2 length, respectively and Eisenmann & Guérin (1992) reported a mean length of 19.4 mm (range 18.0-21.0), anterior width 14.6 mm (13.0-16.0) and posterior width 13.8 mm (12.5-15.0) for m1 and a mean length of 21.6 mm (19.0-24.0), anterior width 15.7 mm (14.0-17.5), posterior width 14.7 mm (13.5-17.0) for m2 of Tapirus arvernensis, suggesting the Maasvlakte 2 specimen is most likely an m2 dex.

Hoek van Holland specimen

The tooth (Fig. 2) is of a similar bilophodont morphology as the Maasvlakte 2 specimen, but significantly larger with a length of 28.0 mm, anterior loph width 20.1 mm and posterior loph width 18.0 mm. Its roots are better preserved and show that both anterior roots and both posterior roots are fused together, the posterior roots arching conspicuously posteriorly. Only on the anterior side a facet where the tooth was in contact with another tooth is present. The specimen shows light wear from use by the animal, with the largest dentin basin (width 5.5 mm) developed on the hypocone, followed by the protocone (width 2.9 mm). The metacone is damaged and on the paracone the enamel is intact. The enamel is black in colour, while the roots are a slightly lighter shade of greyish black.

The morphology of the tooth, the posteriorly arched root, and the wear facet on the anterior side only, show this specimen is an m3 from the right mandible. Croizet & Jobert (1828) gave 21 mm for the m3 length of *Tapirus arvernensis* and Eisenmann & Guérin (1992) gave a length of 22.1 mm (21.0-25.0), anterior width 15.7 mm (14.5-17.0) and posterior width 14.5 mm (12.5-17.5). The Hoek van Hol-

Figure 2. Tapirus sp., m3 dex., beach of Hoek van Holland, Rotterdam, The Netherlands, 14 March 2010, leg. D. Chrispijn, private collection Harold van der Steen (Oss, The Netherlands) GL57B. A occlusal, B buccal, C anterior, D posterior, E lingual view. Photos: Hans Wildschut.

land specimen clearly falls outside these values; its dimensions are over 10% larger than the largest known T. arvernensis. Tapirus jeanpiveteaui, T. balkanicus and Tapiriscus pannonicus are (significantly) smaller than T. arvernensis (Spassov & Ginsburg, 1999; Franzen, 2013; Guérin & Tsoukala, 2013), while Tapirus priscus and T. antiquus are larger than T. arvernensis, the poorly known T. antiquus being larger still than T. priscus (Kaup, 1833; Guérin & Eisenmann, 1994). For Tapirus priscus, Kaup (1833) gave an m3 length of 26 mm and Eisenmann & Guérin (1992) reported m3 length 24.7 mm (22.5-27.0), anterior width 18.5 mm (17.0-20.0) and posterior width 16.6 mm (15.5-18.0). Given the unclear original provenance and stratigraphic age of the Hoek van Holland specimen and the conservative and highly similar morphology of the dentition of Tapirus spp. (e.g. Eshelman et al., 2018), we take a careful approach and identify the Hoek van Holland specimen as *Tapirus* sp., most likely *T. priscus* or *T. antiquus*.

Discussion

For decades the North Sea has yielded Pleistocene mammalian fossils as well as archaeological remains as bycatch in the nets of fishing vessels (Staring, 1861; Maarleveld, 2020). Especially the southern part (below 53° N) is a rich source. Although recovered ex situ, fossils from the North Sea do hold significant potential to increase our knowledge on Pleistocene mammals (Van Kolfschoten & Vervoort-Kerkhoff, 1999), a.o. due to the sheer volume having been recovered by fishing vessels over the past decades including some very rare or unique specimens such as the youngest European record of Homotherium latidens (Owen, 1846) (Reumer et al., 2003) and more recently the easy accessibility of millions of cubic metres of fossiliferous sediments as these are used to nourish Dutch beaches to prevent damage from sea-level rise. The fossils wash free from these sediments and are saved from destruction through erosion and weathering by citizen scientist fossil collectors that are often willing to work together with palaeontologists to study their specimens (Mol, 2016; Curry, 2020). A recent example is the Macaca sylvanus (Linnaeus, 1758) material that was published by Reumer et al. (2018) and represents one of the most north-western records of this taxon. Late Pleistocene (Weichselian) material dominates the North Sea terrestrial mammal record (Mol et al., 2008). Material from the Early or Middle Pleistocene is much rarer and

generally confined to small localities within the North Sea (Mol et al., 2003; Mol & Mulder, 2019).

The Maasvlakte 2 specimen fits with other Early Pleistocene mammalian remains recovered from this site (Mol & Langeveld, 2014, 2016). The Hoek van Holland Tapirus specimen remains somewhat problematical, as it cannot be assigned to Tapirus arvernensis and thus must predate the Pleistocene. Fossils from the Miocene and Pliocene are very uncommon on the beach of Hoek van Holland and if present, they have been fluvially reworked from (mostly marine) strata more to the south (Belgium) or east (Germany) (Langeveld, 2011; Slupik et al., 2013), but the complex sand nourishment history of this beach precludes any definitive statements on the original provenance.

The Tapirus records, especially the Tapirus record from the Westerschelde published by Goetheer (2013) have implications for a unique fossil first published over 70 years ago. Von Koenigswald (1950) mentioned a molar fragment that he identified as part of an M3 of Mammut borsoni. He noted it was collected from "the Scheldt", although a more exact provenance (i.e. Westerschelde or Oosterschelde, and what part thereof) was unknown. It represented the first record of this taxon from the Netherlands. The specimen is kept in NMR, catalogued under NMR999100000698. In their description of two M. borsoni molars from the Hoogdonk brickyard at Hoogdonk near Liessel (province of Noord-Brabant), Mol & Van Essen (1990) reidentified the specimen as an m3 dex. of M. borsoni and questioned its origin. Braber et al. (1999) and Mol et al. (2008) cited the specimen and again noted its unclear provenance. As M. borsoni commonly co-occurs with Tapirus, e.g. at Vialette in France (Lacombat et al., 2008), Milia in Greece (Guérin & Tsoukala, 2013) and Wölfersheim (Tobien, 1952) and Wörth am Rhein (Ziegler, 2003) in Germany, the occurrence of *Tapirus* in the Westerschelde as published by Goetheer (2013) grants new validity to the contested claim of Von Koenigswald (1950) of M. borsoni occurring in "the Scheldt" and suggests it in fact originates from the Westerschelde. Its occurrence in the Early Pleistocene (MN17, Villafranchian; Scager et al., 2017) Oosterschelde fauna is highly unlikely, as this fauna postdates the extinction of M. borsoni at the end of the Pliocene (Tsoukala & Mol, 2016). Hence, we conclude that the fragment NMR999100000698 of an m3 dex. of Mammut borsoni, first reported by Von Koenigswald (1950), most likely originates from the Westerschelde.

Conclusions

The two Tapirus specimens reported here from the beaches of Hoek van Holland and Maasvlakte 2 are the first records of this genus recovered from the bottom of the North Sea and add to the scarce Dutch records; furthermore, they are among the most northern records of this genus. The Hoek van Holland specimen (m3 dex.) is

larger than T. arvernensis and due to the complex sand nourishment history of the site its original provenance is somewhat unclear (although it must have originated from the southern part of the North Sea); it is not identified beyond genus level. The Maasvlakte 2 specimen (m1/m2 dex.) fits well with T. arvernensis and originates from Pleistocene deposits from the Maasvlakte 2 sand dredging pit, just offshore the coast of Rotterdam (coordinates c. 52.01, 3.92). Based on the known stratigraphical range, it fits well with other Early Pleistocene mammalian taxa recovered from this site. These unique specimens demonstrate the scientific value of these nourished beaches and the cooperation with the citizen scientist fossil collectors that collect (i.e. save them from destruction through exposure) fossils there.

Acknowledgements

The Hoek van Holland specimen was collected by D. Chrispijn; H. van der Steen allowed us to study it and to have casts produced by R. Bakker (Manimal Works, Rotterdam); H. Wildschut photographed it. H. Loeff alerted us to the Maasvlakte 2 specimen that was collected and donated by A.L.M. Kolder. J. de Vos (Naturalis Biodiversity Center) and J.W.F. Reumer (Utrecht University) reviewed the manuscript.

References

Boeuf, O. 1991. Tapirus jeanpiveteaui nov. sp., nouvelle espèce de Tapiridae (Perissodactyla) du Pliocène de Charente (France). Palaeontographica A 217: 177-194.

Braber, F.I., Mol, D. & de Vos, J. 1999. On mastodon remains from the Netherlands: an overview. In: Reumer, J.W.F. & de Vos, J. (eds) Elephants have a snorkel! Papers in honour of Paul Sondaar. Deinsea 7: 55-65.

Busschers, F., van Heteren, S. & Westerhoff, W. 2013. Het stratigrafische raamwerk voor de geologische opbouw van het zandwingebied Maasvlakte 2. Rapport 1 van het geo-archeologisch en paleontologisch onderzoek zandwingebied en buitencontour Maasvlakte 2. Utrecht (TNO) Report 2012 R11131: 18 pp. (unpublished report).

Cozzuol, M.A., Clozato, C.L., Holanda, E.C., Rodrigues, F.H.G., Nienow, S., de Thoisy, B., Redondo, R.A.F. & Santos, F.R. 2013. A new species of tapir from the Amazon. Journal of Mammalogy 94: 1331-1345.

Croizet, J.B. & Jobert, A. 1828. Recherches sur les ossements fossiles du département du Puy-de-Dôme. Paris (Adolphe Delahays): 224 pp.

Curry, A. 2020. Europe's lost frontier. Science 367: 499-503.

Dieleman, F. 2013. Overzicht van strandvondsten van woelmuizen en andere kleine zoogdieren langs de Nederlandse stranden: stand van zaken 2013. Afzettingen WTKG 34:

Eisenmann, V. & Guérin, C. 1992. Tapirus priscus from the Upper Miocene of Western Europe: palaeontology, biostratigraphy, and palaeoecology. Paleontologia i Evolució 24/25: 113-122.

- Eshelman, R.E., Lowery, D., Grady, F., Wagner, D. & McDonald, H.G. 2018. Late Pleistocene (Rancholabrean) Mammalian Assemblage from Paw Paw Cove, Tilghman Island, Maryland. Smithsonian Contributions to Paleobiology
- Franzen, J.L. 2013. The tapirs (Mammalia, Perissodactyla, Tapiridae) from the late Miocene (early Turolian) of Dorn-Dürkheim 1 (Germany, Rheinhessen). Palaeobiodiversity and Palaeoenvironments 93: 171-189.
- Goetheer, B. 2013. Zeldzame strandvondst: kies van een tapir. Voluta KZGW 19-1: 10-11.
- Gómez de Soler, B., Campeny Vall-Llosera, G., van der Made, J., Oms, O., Agustí, J., Sala, R., Blain, H.-A., Burjachs, F., Claude, J., García Catalán, S., Riba, D. & Rosillo, R. 2012. A new key locality for the Pliocene vertebrate record of Europe: the Camp dels Ninots maar (NE Spain). Geologica Acta 10: 1-17.
- Guérin, C. & Eisenmann, V. 1994. Les Tapirs (Mammalia, Perissodactyla) du Miocène supérieur d'Europe occidentale. Geobios 27: 113-127.
- Guérin, C. & Tsoukala, E. 2013. The Tapiridae, Rhinocerotidae and Suidae (Mammalia) of the Early Villafranchian site of Milia (Grevena, Macedonia, Greece). Geodiversitas 35: 447-489.
- Hillson, S. 2005. Teeth. Cambridge (Cambridge University Press): xiv+373 pp.
- Hohl, C.J.M., Codron, D., Kaiser, T.M., Martin, L.F., Müller, D.W.H., Hatt, J.-M. & Clauss, M. 2020. Chewing, dental morphology and wear in tapirs (Tapirus spp.) and a comparison of free-ranging and captive specimens. PLoS ONE 15(6): e0234826. https://doi.org/10.1371/journal.pone.0234826
- Kaup, J.J. 1833. Description d'Ossements fossiles de Mammifères inconnus jusqu'à présent. Qui se trouvent au Muséum grand-ducal de Darmstadt; avec figures. 2e Cahier. Darmstadt (J.G. Heyer): 33-64.
- Kortenbout van der Sluijs, G. 1960. The fossil tapir of Maalbeek, Netherlands. Publicaties van het Natuurhistorisch Genootschap in Limburg 12: 12-18.
- Kuitems, M., van Kolfschoten, Th., Busschers, F. & de Loecker, D. 2015. The Geoarchaeological and Palaeontological research in the Maasvlakte 2 sand extraction zone and on the artificially created Maasvlakte 2 beach - a synthesis. BOORrapporten 566: 351-398.
- Kurtén, B. 1968. Pleistocene mammals of Europe. London (Weidenfeld & Nicolson): viii+317 pp.
- Lacombat, F., Abbazzi, L., Ferretti, M.P., Martínez-Navarro, B., Moullé, P.-E., Palombo, M.-R., Rook, L., Turner, A. & Valli, A.M.-F. 2008. New data on the Early Villafranchian fauna from Vialette (Haute-Loire, France) based on the collection of the Crozatier Museum (Le Puy-en-Velay, Haute-Loire, France). Quaternary International 179: 64-71.
- Langeveld, B. 2011. Fossiele mollusken van het strand van Hoek van Holland. Afzettingen WTKG 32: 76-82.
- Langeveld, B. 2013a. Hunting the Dutch beach of Hoek van Holland for fossils: from fossil mice to mammoths. Deposits 33: 5-7.
- Langeveld, B. 2013b. Trogontherium cuvieri Fischer (Castoridae) van het strand van Hoek van Holland en de Zandmotor. Cranium 30-1: 8-12.
- Maarleveld, Th.J. 2020. Beam Trawls and Bones: A Reflection

- on Dutch Fisheries. In: Bailey, G., Galanidou, N., Peeters, H., Jöns, H. & Mennenga, M. (eds) The Archaeology of Europe's Drowned Landscapes. Cham (SpringerOpen, Coastal Research Library 35): 521-536.
- Medici, E.P. 2011. Family Tapiridae (tapirs). In: Wilson, D.E. & Mittermeier, R.A. (eds) Handbook of the mammals of the world. Volume 2. Hoofed mammals. Barcelona (Lynx Edicions): 182-204.
- Moeliker, K. & Langeveld, B. 2021. Natuurhistorisch Museum Rotterdam in 2020: Niet normaal. Straatgras 33: 29-34.
- Mol, D. 2016. Mammoth fossils recovered from the seabed between the British Isles and the European continent. Bulletin du Musée d'Anthropologie Préhistorique de Monaco Supplement 6: 129-142.
- Mol, D. & Langeveld, B. 2014. Wat determinatiesessies aan nieuwe gegevens kunnen opleveren: nieuws van het strand van Maasvlakte 2. Afzettingen WTKG 35: 40-59.
- Mol, D. & Langeveld, B. 2016. Safari mammoth steppe. Hellevoetsluis (Historyland): 48 pp.
- Mol, D. & Mulder, J. 2019. Een raadselachtige hoornpit van de Noordzeebodem: een rund (Bovidae; Bovinae: Leptobos sp.) uit het Laat-Plioceen of Vroeg-Pleistoceen van de bodem van de Noordzee tussen Engeland en Nederland. Cranium 36-2: 45-54.
- Mol, D., de Vos, J., Bakker, R., van Geel, B., Glimmerveen, J., van der Plicht, H. & Post, K. 2008. Kleine encyclopedie van het leven in het Pleistoceen - Mammoeten, neushoorns en andere dieren van de Noordzeebodem. Diemen (Uitgeverij Veen Magazines B.V.): 233 pp.
- Mol, D., Post, K., Reumer, J.W.F., de Vos, J. & Laban, C. 2003. Het Gat: preliminary note on a Bavelian fauna from the North Sea with possibly two mammoth species. In: Reumer, J.W.F., de Vos, J. & Mol, D. (eds) Advances in mammoth research (Proceedings of the Second International Mammoth Conference, Rotterdam, May 16-20 1999). Deinsea 9: 253-266.
- Mol, D., Post, K., Reumer, J.W.F., van der Plicht, J., de Vos, J., van Geel, B., van Reenen, G., Pals, J.P. & Glimmerveen, J. 2006. The Eurogeul - first report of the palaeontological, palynological and archaeological investigations of this part of the North Sea. Quaternary International 142/143: 178-185.
- Mol, D., van Logchem, W. & de Vos, J. 2011. New record of the European jaguar, Panthera onca gombaszoegensis (Kretzoi, 1938), from the Plio-Pleistocene of Langenboom (The Netherlands). Cainozoic Research 8: 35-40.
- Mol, D.J. & van Essen, J.A. 1990. Mammut borsoni from the Netherlands. Lutra 33-2: 183-186.
- Newton, E.T. 1891. The Vertebrata of the Pliocene deposits of Britain. London (Memoirs of the Geological Survey of the United Kingdom, Eyre and Spottiswoode): xi+137 pp.
- Peters, N. 2013. Van reuzenhaai tot Chalicotherium. Fossielen uit Mill-Langenboom. Boxtel (Oertijdmuseum De Groene Poort Boxtel): 158 pp.
- Peters, N. & de Vos, J. 2013. Brief description of some terrestrial mammal fossils from Mill-Langenboom (The Netherlands). Cainozoic Research 10: 15-22.
- Prothero, D.R. 2009. Evolutionary Transitions in the Fossil Record of Terrestrial Hoofed Mammals. Evolution: Education and Outreach 2: 289-302.

- Reumer, J., Mol, D. & Borst, W. 2010. The first Late Pleistocene coprolite of *Crocuta crocuta spelaea* from the North Sea. *Deinsea* 14: 15-18.
- Reumer, J.W.F., Mol, D. & Kahlke, R.-D. 2018. First finds of Pleistocene *Macaca sylvanus* (Cercopithecidae, Primates) from the North Sea. *Revue de Paléobiologie* 37: 555-560.
- Reumer, J.W.F., Rook, L., van der Borg, K., Post, K., Mol, D. & de Vos, J. 2003. Late Pleistocene survival of the sabertoothed cat *Homotherium* in northwestern Europe. *Journal of Vertebrate Paleontology* 23: 260-262.
- Ruiz-García, M., Castellanos, A., Bernal, L.A., Pinedo-Castro, M., Kaston, F. & Shostell, J.M. 2016. Mitogenomics of the mountain tapir (*Tapirus pinchaque*, Tapiridae, Perissodactyla, Mammalia) in Colombia and Ecuador: Phylogeography and insights into the origin and systematics of the South American tapirs. *Mammalian Biology* 81: 163-175.
- Rustioni, M. & Mazza, P. 2001. Taphonomic analysis of *Tapirus arvernensis* remains from the Lower Valdarno (Tuscany, Central Italy). *Geobios* 34: 469-474.
- Scager, D.J., Ahrens, H.-J., Dieleman, F.E., van den Hoek Ostende, L.W., de Vos, J. & Reumer, J.W.F. 2017. The Kor & Bot collection revisited, with a biostratigraphic interpretation of the Early Pleistocene Oosterschelde Fauna (Oosterschelde Estuary, the Netherlands). *Deinsea* 17: 16-31.
- Schap, J.A. & Samuels, J.X. 2020. Mesowear Analysis of the *Tapirus polkensis* population from the Gray Fossil Site, Tennessee, USA. *Palaeontologia Electronica* 23-2:a26. https://doi.org/10.26879/875
- Slupik, A.A, Wesselingh, F.P., Mayhew, D.F., Janse, A.C., Dieleman, F.E., van Strydonck, M., Kiden, P., Burger, A.W. & Reumer, J.W.F. 2013. The role of a proto-Schelde River in

- the genesis of the southwestern Netherlands, inferred from the Quaternary successions and fossils in Moriaanshoofd Borehole (Zeeland, the Netherlands). *Netherlands Journal* of Geosciences 92: 69-86.
- Spassov, N. & Ginsburg, L. 1999. *Tapirus balkanicus* nov. sp., nouveau tapir (Perissodactyla, Mammalia) du Turolien de Bulgarie. *Annales de Paléontologie* 85: 265-276.
- Staring, W.C.H. 1861. Aperçu des ossements fossiles de l'époque diluvienne trouvés dans la Néerlande et les contréés voisines. Verslagen en Mededeelingen der Koninklijke Akademie van Wetenschappen, Afdeeling Natuurkunde 12: 256-284.
- Tobien, H. 1952. Die oberpliozäne Säugerfauna von Wölfersheim-Wetterau. Zeitschrift der Deutschen Geologischen Gesellschaft 104: 191.
- Tsoukala, E. & Mol, D. 2016. The Proboscidea of the Early Villafranchian site of Milia (Grevena, Macedonia, Greece). *Quaternary International* 406B: 4-24.
- Van Kolfschoten, Th. & Vervoort-Kerkhoff, Y. 1999. The Pleistocene and Holocene Mammalian assemblages from the Maasvlakte near Rotterdam (the Netherlands), with special reference to the Ovibovini *Soergelia minor* and *Praeovibos* cf. *priscus. In*: Reumer, J.W.F. & de Vos, J. (eds) Elephants have a snorkel! Papers in honour of Paul Y. Sondaar. *Deinsea* 7: 369-381.
- Von Koenigswald, G.H.R. 1950. Voorlopige mededeling omtrent het voorkomen van *Mastodon borsoni* in Nederland. *Geologie en Mijnbouw* 12-1: 14-15.
- Ziegler, R. 2003. Mammut & Höhlenbär. Säugetiere aus dem Eiszeitalter Südwest-Deutschlands. *Stuttgarter Beiträge zur Naturkunde, Serie C* 52: 1-87.