Engin Ünay¹, Hans de Bruijn² and Gerçek Saraç³

- ¹ Cumhuriyet Universitesi, Sivas
- ²Utrecht University
- 3 MTA, Ankara

A preliminary zonation of the continental Neogene of Anatolia based on rodents

Ünay, E., De Bruijn, H. & Saraç, G., 2003 - A preliminary zonation of the continental Neogene of Anatolia based on rodents - in: Reumer, J.W.F. & Wessels, W. (eds.) - DISTRIBUTION AND MIGRATION OF TERTIARY MAMMALS IN EURASIA. A VOLUME IN HONOUR OF HANS DE BRUIJN - DEINSEA 10: 539-547 [ISSN 0923-9308] Published 1 December 2003

The inventory of one hundred and sixty rodent assemblages from Anatolia ranging in age from Late Oligocene to Early Pleistocene has resulted in an informal local zonation for the Neogene. The sixteen zones recognized and the correlations to the MN scale suggested are based on the stage of evolution of the Muroidea. The Neogene succession of the Anatolian rodent faunas is briefly reviewed and compared to that of Europe. This leads to the conclusion that the Miocene faunas of Anatolia show a very pronounced endemism, which comes to an abrupt end during the Mio/Pliocene boundary interval.

Correspondence: E. Ünay, Cumhuriyet University, Department of Anthropology, 58140 Sivas, Turkey; H. de Bruijn, Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Budapestlaan 4, P.O.Box 80021, 3508 TA Utrecht, the Netherlands; G. Saraç, M.T.A. Genel Müdürlügü, Tabiat Tarihi Musesi, 06520 Ankara, Turkey

Keywords: Rodents, Anatolia, Turkey, Neogene, biostratigraphy

INTRODUCTION

The systematical search for fossil mammals in the Anatolian continental basins started in the 1960's when the need for biostratigraphical control was imminent for lignite exploration. The results of the collaborative programme of the M.T.A. (Geological Survey of Turkey) and the Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, clearly showed the potential of a mammalbased biostratigraphy for unravelling the sedimentary and tectonic history of the complex intramontane basins of Anatolia (Sickenberg et al. 1975). As a consequence, this line of research became a standard addition to many M.T.A. mapping projects dealing with continental Tertiary sediments. In this way the information on the Neogene

mammal fauna now available is overwhelming, but poorly accessible because it is either recorded in internal reports of the M.T.A. or published in specialized papers. Notable exceptions to this rule are Sickenberg et al. (1975), who presented a biostratigraphical overview of the Turkish Neogene mammal bearing deposits known at the time and Andrews et al. (1990), who elaborated on all aspects of the Middle Miocene hominoid site at Pasalar. More recently, teams working on tectonics and basin analysis feel the need for detailed mammal-based biostratigraphical data. Simultaneously the interest in fossil mammal communities is enhanced, because they serve as a tool for making paleogeographical and paleoclimatological reconstructions. In order to make the exact location,

faunal content and inferred age of all Turkish fossil mammal localities accessible we have started to make a database that more or less follows the Helsinki based NOW system. So far the coordinates of almost all of the \pm 260 Anatolian mammal sites have been measured and the data from the literature have been entered. In the next phase we have (re)identified the rodents at the genus level and, when possible without taxonomical revision, at the species level. The first results of this work, essentially concentrating on the Neogene Muroidea because they dominate the rodent assemblages in terms of diversity as well as in number of specimens and show a high rate of evolution, are presented in the Tables 1 and 2. These tables, giving a selected number of taxa from forty-two selected localities that have been grouped into sixteen 'zones', should be seen as our interpretation of the data. The database contains about 160 rodent assemblages of different content and sample size. The 'zones' A to P are basically defined on a combination of species, but since some assemblages have not been studied in detail some of the species characterizing a particular zone are not yet formally named. First and last occurrences of genera in the Anatolian

record are considered to have limited biostratigraphical value at this stage, because the record is incomplete. They have, however, been used in order to detect major migration events. Isolated, but interesting, occurrences of genera have, with the exception of *Calomyscus*, been omitted in this first concept. It is clear, however, that a single tooth of a *Melissiodon* in Kargi 2, or of a *Protalactaga* in Sofça will eventually be of primary importance for correlating our local zonation to other zonal systems. Tie points provided by radiometrical ages and by correlation of a locality to the GPTS are given in the column remarks of Table 1.

REMARKS ON THE TABLES I AND 2

The selected forty-two localities (Fig. 1) listed in the first column of Table 1 are grouped into sixteen zones A to P on the basis of the stage-of evolution of the Muroidea and Zapodidae. Their sequence within a zone is more or less arbitrary because many of the assemblages have not been studied in sufficient detail to establish their age relationship. The first and last occurrences of genera of other (super) families given in columns 4 and

 $\label{thm:localities} \textit{Figure I} \quad \textit{Map of Turkey indicating the approximate position of the localities listed in Table I. The numbers refer to the Appendix.}$

5 have been added after the sequence had been established, so these have not influenced the position of the 'boundaries' between the zones. Selection criteria for the assemblages have been sample size, faunistic diversity and availability for study. The geographical position of the localities has not influenced our choice, because we have not been able to establish a correlation between geographical distance and fauna composition. The composition of the assemblages from Pasalar and Candır, two localities that are similar in age but far apart, shows much more similarity than the ones from, for instance, Kangal 1 and Süleymanlı 2, which are grouped in the same zone and are geographically much closer. It therefore seems that difference in the biotope sampled has a much stronger influence on the composition of an assemblage than geographical distance does. The species that 'define' the zones, listed in the third column, are in some cases not formally named, so it is impossible at this stage to name the assemblage zones after the species that characterize them. The fourth and fifth column give, respectively, the first and last record in Anatolia of a selection of rodent genera. The main criteria for selection have been that they are relatively easy to identify and have biostratigraphical potential. In spite of the incompleteness of the Neogene rodent record of Anatolia the list of first and last occurrences shows conclusively that the Miocene sequence of entrees and exits is very different from that in Europe and central Asia. Although this listing is no doubt biased by differences in documentation between different zones, it strongly suggests that periods of fauna renewal alternated with periods in which endemic evolution prevailed.

In the sixth column 'Remarks' we have indicated when the rodent fauna of a particular zone has not been studied sufficiently, so formal names of the species characterizing the zone are not available. In this column we have also indicated the localities that have been radiometrically dated or have been correlated to the GPTS (data from the literature).

The last column of Table 1 gives our tentative correlation of the local zones A to P with the MP/MN schemes. This correlation is at this stage little more than a sophisticated guess based on the stage-of-evolution of the rodent faunas.

THE ZONES A TO P

The zones A to P are based on the association of the species of muroids and zapodids present in the associations assigned to a particular zone. The species selected to define the zones are usually common and relatively easy to identify in order to promote access to the zonal system by non-specialists.

Zone A is characterized by the dominance of Meteamys alpani and/or Muhsinia steffensi.

Zone B and C share Eumyarion microps, Spanocricetodon sinuosis, Cricetodon versteegi and Heterosminthus cf. firmus, but contain different species of Deperetomys and Mirabella: D. anatolicus and Mirabella sp. (de Bruijn & Saraç 1992) in zone B and D. intermedius and M. anatolica in zone C.

Zone D is charactized by *Cricetodon kasapligili*, *Eumyarion intercentralis*, *Mirabella crenulata* and *Democricetodon doukasi*.

Zone E is characterized by *Cricetodon* tobieni, *Anomalomys minor* or aliveriensis, *Democricetodon franconicus* or gracilis and *Mirabella tuberosa*.

Zone F is characterized by Cricetodon pasalarensis or candirensis, Pliospalax marmarensis and Democricetodon gaillardi.

Zone G is characterized by two not named species of Cricetodon that differ strongly in size and Heterosminthus cf. mongoliensis.

Zone H is characterized by Byzantinia ozansoyi and/or bayraktepensis and/or cariensis and/or eskihisarensis, Anomalomys gaudryi, Myocricetodon eskihisarensis, Pliospalax canakkalensis and Heterosminthus orientalis.

Zone I is characterized by Progonomys cathalai and Byzantinia nikosi and/or dardanellensis.

Zone J is characterized by *Byzantinia piker-miensis* and/or *uenayae*, *Pseudomeriones latidens* and the associated occurrence of

Table I An informal biozonation of the Anatolian continental Neogene based on Muroidea and Dipodidae and its tentative correlation to the European MN scheme. The entries and exits of a number of selected rodent genera that do not define the informal zones are given in the columns three and four.

Local Zones	Selected Localities	Rodent species (primarily Muroidea) that characterise the (sub) zone	First record selected genera in Anatolia	Last record selected genera in Anatolia	Remarks	Preliminary correlation to MN scale
Р	Hamamayağı Yağmurlu	Mimornys pilocaenicus/ostramosensis Tibericola sakaryaensis	Borsodia Clethrionomys Tibericola Kalymnomys			17
0	Havza-Yenice Gülyazi	Mimornys polonicus/septimanus Plionys graecus Pliospalax tourkobouniensis	Lagurini	Pliomys		16
N	Tașova Çalta Ortalica	Mimornys occitanua/gracilis Mesocrositus primitibus Pilospelak mecovei Phagapodemus frequens	Pliomys Sciurus * Orientalomys *	Pseudomeriones Occitanomys		15
м	Kangai 2 Bebedet	Promimomys insuliferus/cor	Mesocricetus * Cricetus * Mimomys * Promimomys * Biornkurtenia *	Promimornys Keramidomys Bjornkurtenia	14	
L	Stileymanlı 2 Kanpal 1	Hansdebrujnia neutrum two Apodemus species with fully developed t7	Calomyscus *	Calomysous Dipoides	Calomyscus from Süleymanlı only. Faunas not sufficient studled	13
ĸ	Bayırköy Amasya 1 Düzyayla	Byzantinia hellenicus two species of Parapodemus/Apodemus. with 17 incompletely developed	Dipoides * Allactaga Hystrix *	Byzantinia		12
J	Cumalı Hayranlı 1	Byzantinia pikermiensis/ueneyee Pseudemeriones latidens The associated occurence of Progonomys,	Apodemus Parapodemus cf. Biancomys * Pseudomeriones	Proteiactalga Progonomys	Faunas not sufficient studied	11
ı	Karašzū Aşağiçiğil Bayraktapa 2	Parapodemus, Apodemus and Occitanomys Byzantinia dardaneilensis/hikosi Progonomys cathalai	Occitanomys	Cricefuladon		10 9
н	Yenieskhisar** Bayraktepe 1 Bağiçi Sarıçay Sofça	Byzantinia ozansoyóbaynakhapensis Byzantinia ozinensivleskivisarensis Anomalomya gasudnji Mycoricerodon eskihisarensis Pisospalax canakkairensis Heterosamithus ef. orientalis	Progonomys * Myocricetodon Cricetulodon * Atlantoxerus * Schreuderia Byzantinia Mopetaurista *	Heterosminithus Atlantovarus Eumyarion (mediur Megaoricetodon Democricetodon Myocricetodon	Yenieskihisar radiometric 13.2. Ma n)	7+8
G	Zambal	Two unnamed Cricetodon species Heterosminthus of mongoliensis		Cricetodon	Faunas not sufficient studied	6
F	Çandır 2 Paşalar	Cricetodon pasaslarensis/ candrensis Pisospalax marmarensis Democriceodon galfardi	Forsythia Albanensia * Eomyops * Protalactaga * Keramidomys *	Sayimys		5
E	Belenyenice ** Kaplangi Horlak 1a Dededağ	Cricetodon libbieni Anomalomys minorialiveriensis Democrotetodan franconicus/gracilis Minobella fuberosa	Pliospalex	Aliveria Belenyenice radiometric Ma Debrujinia 17.3 ± 0.4		4
D	Kınık 1 Harta Kesekőv	Oricefodor kasapligili Euroyarion Infercentralis Democricefodor doukasi Mirabella crenulata	Aliveria * Sayimys * Debruijnia * Megacricetodon *	(small) Eurryarion Spanocricetodon		3
С	Kinik 2 Harami 3 Harami 1 **	Eurnyarion microps Mirabella anatolica Saggestiated a signature Dependency intermedius			Harami 1 corr. to GPTS 22.9 Ma	2
В	Kargi 2 Kilçak 0-3b	Sparretorings anatolicus Cricerodon versteepi Mirabella ap. (De Bruin Heterosminthus cf. firmus A Sarec, 1992)	Heterosminthus * Eurryanion * Mirabella * Democricetadon Enginte * Deperetornys *	Meteamys Muhsinia		1
A	Kargi 1 İnkonak **	Meteamys alpani Muhainis steffensi	Deperatornys * Muhainia * Meteamys * Spanocricetodon * Cricetodon *		Inkonak corr. to GPTS 25.3-23.2 Ma	MP 30

^{*} No potential ancestor known from older levels in study area ** Localities that are radiometrically or magnetostratigraphically dated

Progonomys, Parapodemus, Apodemus and Occitanomys.

Zone K is characterized by *Byzantinia hellenicus* and two species of murids with dental patterns that are intermediate between *Parapodemus* and *Apodemus*.

Zone L is characterized by *Occitanomys* (*Hansdebruijnia*) *neutrum* and two species of *Apodemus* with a fully developed t7. **Zone M** is characterized by *Promimomys* insuliferus and/or cor and *Mimomys* dayakosi.

Zone N is characterized by *Mimomys occita*nus and/or gracilis, *Mesocricetus primitivus*, *Pliospalax macovei* and *Rhagapodemus* frequens.

Zone O is characterized by *Mimomys* polonicus and/or septimanus, Pliomys graecus and Pliospalax tourkobouniensis. **Zone P** is characterized by *Mimomys pliocaenicus* and/or ostramosensis and Tibericola sakaryaensis.

CONCLUSIONS

The succession of Neogene rodent faunas of Anatolia presented schematically in the Tables 1 to 3 is very different from the European record in its composition as well as in the position of fauna turnovers. The change in composition of the rodent assemblages in Europe during the Oligocene/Miocene boundary interval is gradual (Alvarez Sierra et al. 1987), but in Anatolia there seem to be two sharp breaks: one within the Late Oligocene that is marked by the local extinction of the Ctenodactylidae while all the Muroidea are replaced, and the other (situated between zone A and B and provisionally correlated with the Oligocene/Miocene boundary) is marked by the appearance of the Eumyarion microps group, Deperetomys, Democricetodon, Enginia and Heterosminthus. The Early Miocene rodent record of Anatolia shows a surprisingly large number of genera that are neither known from Europe, nor from central Asia, while some others arrive much earlier in Anatolia than elsewhere. This suggests an east to west

migration route. This assumption is in line with the paleogeographical map for the Early Miocene of the Peritethys recently published (Meulenkamp *et al.* 2000a,b), that shows the area that is now Anatolia bounded by the Tethys to the south and by the Alpine, Black sea, Caucasian and Caspian basins to the west and the north.

Table 2 shows a number of minor faunal turnovers during the Early and Middle Miocene that seem to coincide with the boundaries between our zones that are based on the stage-of-evolution of the Muroidea. This coincidence may, however, be due to lack of information from intermediate levels. The endemism of the Anatolian rodent fauna discussed above comes to an abrupt end at the boundary between zones L and M, a level that is provisionally correlated to the Miocene/Pliocene boundary. This level that is marked by the entry of *Promimomys*, Microtodon, Mimomys, Cricetus and Mesocricetus seems to mark an immigration event coming from the north that brings the Anatolian and European records in tune.

The Eomyidae, a family that is presumably of North American origin, reached central Asia and Europe at the 'Grande Coupure', but appears in the Anatolian record as late as the Middle Miocene. This immigration of the genera Keramidomys and Eomyops occurring in zone F may well correlate with the entry of these genera in MN5 in Europe. The Ctenodactylidae, a family that is presumably of central Asiatic origin is represented in the Oligocene record of Anatolia by two genera per assemblage, but is absent from zones A to C, the ctenodactylid vacuum. The entrance of the genus Savimys in zone D seems to mark a second westwards migration of to the ctenodacylids that has reached the Arabian plate (Sen & Thomas 1979) and Africa where it formed the ancestral stock of the Miocene to Recent representatives of the family.

The Miocene history of the Murinae, a subfamily that seems to be of southeast Asiatic origin, is quite different in Anatolia and Europe. Although the genus *Progonomys* is

Sersocia Tentative Correlation to M.P./M.N. Scale Selected Rodent Genera Table 2 The stratigraphical ranges of a number of selected rodent genera found in Anatolia relative to the informal zones defined above.

544

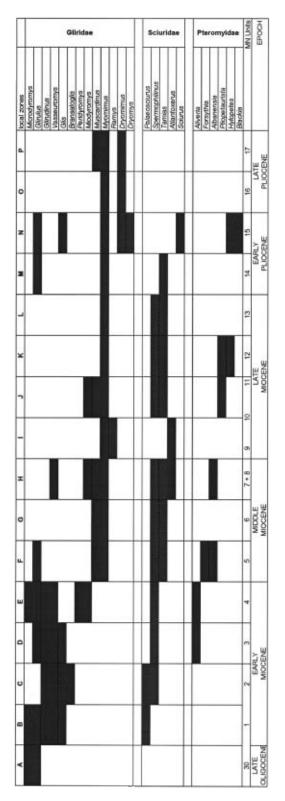


Table 3 The stratigraphical ranges of the genera of the rodents families Gliridae, Sciuridae an Pteromyidae found in Anatolia relative to the informal zones defined above.

the first to arrive in both areas, the next younger level in Anatolia contains *Progonomys* associated with *Parapodemus*, *Apodemus* and *Occitanomys* (zone J) an association that is not known from Europe.

The Gliridae, a family that is considered to have its origin in Europe, appears in Anatolia during the Late Oligocene. Although the family plays a modest role in the Neogene rodent record of Anatolia, it is quite diverse (six genera) in zones B to E, which are correlated with the Early Miocene (Ünay 1994). Their Middle Miocene record is erratic, with the exception of the ever-present genus *Myomimus* that does not seem to show much evolutionary change (Table 3). The entry of the genera *Dryomimus* and *Dryomys* is in zone N.

The Sciuridae and Pteromyidae, two families of unknown origin, are not known from the Anatolian Oligocene and remained rare throughout the Neogene. The first record of the Sciuridae is *Palaeosciurus* in zone B, and the first Pteromyidae is Aliveria in zone D (Table 3). These late entries of the families (in comparison to Europe), contrast with the earlier records of many genera of Muroidea in Anatolia. Moreover, all the genera of squirrels and flying squirrels are known from Europe also. This suggests that the squirrels were not part of the same immigration events that brought the Muroidea. In this context it is peculiar that the Xerini (a tribe that is very well represented in the Miocene assemblages of southwestern Europe) is known by a few isolated teeth of Atlantoxerus in the zones H and I only.

ACKNOWLEDGEMENTS

We are grateful to Faruk Ay, Pinar Gozluk and Ayhan Yigit for feeding the computer our data during ten very long days in a row and keeping laughing. Wilma Wessels and Jan van Dam taught the second author (H. de B.) to overcome his computer fear and Izaak Santoe made the locality map. Marjolein Boonstra, your skillful preparation of the tables, patience with the second author (H. de B.) and feeling for the correct spelling of Turkish names have essentially contributed to the quality of this paper as well as of our lives.

REFERENCES

- Alvarez Sierra, M.A., Daams, R., Lacomba, J.I., Lopez-Martinez, N. & Sacristan Martin, M.A., 1987 Succession of Micromammal faunas in the Oligocene of Spain in: Schmidt-Kittler, N. (ed.) International Symposium on Mammalian Biostratigraphy and Paleoecology of the European Paleogene pp. 43-49, Münchner Geowissenschaftliche Abhandlungen A 10
- Andrews, P. & Willam, J. (Eds.), 1990- The Miocene hominoid Site at Pasalar, Turkey - Journal of Human Evolution 19 (4/5): 1-588
- Bruijn, H. de & Sarac, G., 1992 Early Miocene rodent faunas from the eastern editerranean area Part II.

 Mirabella (Paracricetodontinae, Muroidea) Proceedings Koninklijke Nederlandse Akademie van
 Wetenschappen 95 (1): 25-40

Meulenkamp, J.E., Sissing, W. et al., 2000a - Early

- Burdigalian in: Crasquin, S. (Coord.) Explanatory notes, Atlas Peri-Tethys, Palaeogeographical maps pp. 79-176 Commission de la Carte Géologique du Monde, Imprimerie Les Presses du Val de Loire
- Meulenkamp J.E., Sissing, W. & et al., 2000b Early Burdigalian (map 20) in: Dercourt, J., Gaetani, M. et al. (eds.) Atlas Peri-Tethys, Palaeogeographical maps Commission de la Carte Géologique du Monde, Imprimerie Les Presses du Val de Loire
- Sen, S. & Thomas, H., 1979 Découverte de rongeurs dans le Miocène moyen de la formation Hofuf (province du Hasa, Arabie Saoudite) - Compte Rendu Sommaire de la Société Géologique de France 1: 34-37
- Sickenberg, O., Becker-Platen, J.D., Benda, L., Berg, D.,
 Engesser, B., Gaziry, W., Heissig, K., Hunermann,
 K., Sondaar, P.Y., Schmidt-Kittler, N., Staesche, K.,
 Staesche, U. & Steffens, P., 1975 Die Gliederung
 des höheren Jungtertiärs und Altquartiärs in der
 Türkei nach Vertebraten und ihre Bedeutung fur die
 International Neogen-stratigraphie Geologisches
 Jahrbuch B15: 1-167

Received I July 2001 Revision received 05 April 2002 Accepted 16 September 2002

APPENDIX List of localities given in column 1 of Figure 1 with coordinates , local zone and epoch assignment.

Number	Locality Name	Coordinates				Local Zone	Epoch		
1	Bayırköy	40	22	4,0	26	34	0,4	K	Late Miocene
2	Cumalı	40	19	11,1	26	34	16,1	J	Late Miocene
3	Bayraktepe 1	40	6	14,8	26	25	1,3	H	Middle Miocene
4	Bayraktepe 2	40	6	10,4	26	25	26,2	I	Late Miocene
5	Paşalar	39	58	4,0	26	17	50,5	F	Middle Miocene
6	Belenyenice	38	47	57,2	27	26	43,4	E	Early Miocene
7	Harta	39	2	15,3	27	44	19,9	D	Early Miocene
8	Kınık 1	39	5	36,5	28	11	0,5	D	Early Miocene
9	Yagmurlu	38	25	2,1	28	16	2,4	D	Late Pliocene
10	Dededaĝ	37	39	5,5	27	23	59,6	E	Early Miocene
11	Sariçay	37	19	52,4	27	47	39,7	H	Middle Miocene
12	Yenieskihisar	37	18	40,4	28	2	44,7	H	Middle Miocene
13	Amasya 1 *	37	37	0,7	20	27	37,2	K	Late Miocene
14	Sofça	39	38	46,3	30	10	43,4	H	Middle Miocene
15	Kaplangi	38	48	18,1	29	50	11,3	E	Early Miocene
16	Gülyazı	38	16	12,3	30	10	58,1	O	Late Pliocene
17	Babadat	39	31	51,1	31	38	52,5	M	Early Pliocene
18	Harami 1/3	38	27	27,2	31	49	30,8	C	Early Miocene
19	Asaĝıçiĝil 1	37	2	50,1	31	50	1,3	I	Late Miocene
20	Keseköy	40	39	51,6	32	40	51,5	D	Early Miocene
21	Çalta	40	14	21,8	32	32	39,0	N	Early Pliocene
22	Baĝiçi	39	31	56,8	32	54	42,0	H	Middle Miocene
23	Kılçak 0-3b	40	12	52,4	33	24	20,5	В	Early Miocene
24	Çandır 2	40	17	41,6	33	29	12,0	F	Middle Miocene
25	Süleymanlı 2	40	30	54,4	33	37	27,6	L	Late Miocene
26	Ortalica	41	3	2,1	34	14	56,0	N	Early Pliocene
27	Kargi 1/2 *	40	52	41,1	34	52	56,4	A/B	Early Pliocene
28	Zambal	41	2	59,8	34	59	3,0	G	Orta Miocene
29	Hamamayağı	40	58	25,3	35	47	9,3	P	Plio/Pleistocene
30	Yenice *	40	59	20,0	35	48	15,7	O	Late Pliocene
31	Tașova *	40	30	18,5	36	15	22,0	N	Early Pliocene
32	İĝdeli	39	11	25,4	35	52	38,4	M	Early Pliocene
33	Karaözü	39	10	28,9	35	55	59,7	J	Late Miocene
34	Horlak 1	39	9	53,2	36	0	11,0	R	Early Miocene
35	Hayranlı 1	39	44	52,9	36	48	51,7	J	Late Miocene
36	Düzyayla	39	55	33,4	37	18	56,5	K	Late Miocene
37	İnkonak *	39	30	0	37	55	50,2	A	Late Oligocene
38	Kangal 1/2	39	21	1,7	37	1	48,7	L	Late Miocene

DEINSEA - ANNUAL OF THE NATURAL HISTORY MUSEUM ROTTERDAM P.O.Box 23452, NL-3001 KL Rotterdam The Netherlands