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INTRODUCTION

UPTAKE OF IRON BY PLANTS

Higher plants have two known ways (‘Strategies’, Rbmheld & Marschner 1986a,

Romheld 1987a, b) of mobilizing and taking up iron from the soil (Fig. 1). Dicots and

non-grass monocots mobilize iron by acidification of the rhizosphere, and the dissolved

ferric iron and its chelates can be reduced by a plasma membrane-boundenzyme system

(Chaney et al. 1972). The resultant ferrous ion is easily taken up. Plants that grow in

Iron metabolism in plants is characterized by a dual requirement: (i) to have iron available

in quantities sufficient for growth and for activities of essential processes, and (ii) to keep

its concentrations low enough to prevent iron toxicity. This review is concerned with the

ways in which plants may fulfil both conditions.

Iron is extensively used as an electron carrier, as in cytochromes, ferredoxins,

reductases and oxidases, but also in enzymes that do not catalyse a net electron transfer,

such as aconitase. Synthesis or activationof theseenzymes requires (as faras is known) the

ferrous (Nakazawa etal. 1969; Bentleeru/. 1976; Jones 1983; Kennedy etal. 1983)orferric

ion, underreducing conditions (Pagani et at. 1984).
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nutrientsolution with a ferric chelateturn chloroticwhen a ferrous chelatoris added to the

solution. During iron deficiency in the plant, proton excretion, ferric reduction and fer-

rous uptake capacity are all activated or induced. Moreover, the roots form extra root

hairs and laterals.This complex of reactions has been called Strategy I for iron efficiency.

Strategy II, used by grasses, has been discovered recently (Takagi et al. 1984). Roots of

grasses excrete iron-binding compounds (‘phytosiderophores’) which, after mobilizing

ferric ionsfrom the soil, can be taken up as such, presumably by a carrier system in the root

cells’ plasma membranes. Both phytosiderophore excretion and the carrier system are

activated or induced by iron deficiency.

Metabolic events in roots of iron-deficient plants

During iron deficiency, both grasses and the other higher plants accumulate organic acids

in their tissues, mainly malate and citrate (Iljin 1950). It is not known how the deficiency

causes the accumulation. It may be instructive to have a look at microbiology, as many

micro-organisms excrete citric acid upon iron deficiency. The most intensively studied

organism in this respect is Aspergillus niger, which produces most of the world’s indus-

trially made citric acid, generally assumed to be in response to iron or other metal de-

ficiency (Lockwood 1975). In this mould, manganese deficiency causes a deregulation of

protein metabolism, which leads to intracellularaccumulation of NH
4

+

(Ma et al. 1985).

This, in turn, makes a key enzyme in glycolysis (phosphofructokinase I) insensitive to

feedback inhibitionby citrate (Habison et al. 1979). The result is uncontrolled glycolysis
and accumulationofphosphenolpyruvate (PEP) and pyruvate, which are carboxylated to

Fig. 1. Two mechanisms (‘Strategies’) for iron uptake. Strategy I can use the ferric-siderophore complex from

Strategy II (Romheld & Marschner 1986a, b).
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oxaloacetate. The final product is citric acid; the capacity of the mitochondriato metab-

olize citratebeing insufficient(Kubicek & Rohr 1978; cf. Ackrell et al. 1984). In the case of

plant tissues no such effects have been reported.

In grasses, acid accumulation in roots results in a shift in the uptake pattern of anions

and cations (van Egmond & Aktas 1977). Grasses tend, in general, to excrete OH"

(or HC0
3“) when growing on nitrate as a nitrogen source, and this tendency is diminished

upon iron deficiency. The net excretion of protons by an iron-deficientgrass growing on

nitratehas not been shown, except in a special case where nitrate reductase activity in the

roots had been lowered by preculture on NH
4

+

(Landsberg 1979).

In dicots, which have a more acid uptake pattern (van Egmond & Aktas 1977), acid

accumulation can be accompanied by a net protonexcretion. During proton excretion the

production oforganic acids, and C0
2 fixation, is increased (Landsberg 1986).

Strategy I. Rhizosphere acidification, ferric reduction,ferrous uptake

Proton excretion in parallel with acid production is performed by transfer cells that are

formedin the rhizodermallayers as a response to iron deficiency (Kramer et al. 1980). The

labyrinth-like wall, lined with the proton-excreting plasma membrane, is oriented to the

outsideofthe root. In the plasma membranean ATPase pumps out the protons (Rbmheld

et al. 1984). Due to the large surface ofthe plasma membranein the transfer cells and the

large numbers ofATP-supplying mitochondria, the plasma membrane ATPase can drive

anextremely fast proton excretion on the basis ofroot fresh or dry weight (Rdmheld et al.

1984). The acids formed during a wave of proton excretion are partly stored in the roots

themselves and partly exported to the shoot via the xylem (de Vos et al. 1986; Landsberg

1986; cf. Tiffin 1966).

The cells that excrete the protons are also the site of ferric reduction (Landsberg 1986).

Ferric ions, dissolved by the low local pH, diffuse to the root surface or are taken there

by the transpiration stream, which is strongest during the period of maximal proton

excretion (Sijmons & Bienfait 1986). The plasma membranecontains a reduction system

which can reduce ferric ions and its chelates. Its activity is strongly increased upon iron

deficiency (Turbo reductase, Bienfait 1985; Cakmak et al. 1987). The reductionsystem has

a low specificity and attacks many ferric chelates(Bienfait et al. 1983; Chaney 1989), with

the exception of ferrioxamine (Bienfait et al. 1983; Rbmheld& Marschner 1983b). In its

strong complex with desferrioxamine, ferric probably has too low an affinity for electrons

(Nomoto et al. 1987). The redox potential of the Turboelectron donationsite depends on

the potential ofthe redox agent thatkeeps the plasma membranesystem reduced. Accord-

ing to Sijmons et al. (1984) this redox agent is NADPH because the level of NADPH

dropped within 2 min after addition of a reducible iron salt. Recently, however, the

Beltsville group (Luster et al. 1988) reported that iron deficiency increases the NADH-

oxidizing capacity of tomato roots. It is possible that a large cytosolic pool of NADPH

gives its electrons to a smaller(undetectable) pool of cytosolic NAD, which then reacts

with the ferric reductase in the plasma membrane.

The E of theNADPH/NADP+ pool is probably poised at around —0-37 V (Sijmons et

al. 1984), and this sets a lower limit to the E at the electron donation site of the Turbo

system, on the other side of the plasma membrane. It is therefore to be expected that

compounds with an E
0,

between pH 3 and 6, below —0-40 V will not be readily reduced.

Thus, ferric rhodotorulate (E0

'
—0-36 V, Nomoto et al. 1987) is reduced (Miller et al.

1985) but ferrioxamine is not (E0

' —0-47 V). See Bienfait (1988a) for a discussion on this

subject.
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Castignetti & Smarrelli (1986; see also Smarrelli & Castignetti 1988) reported that

NADH can reduce several ferric siderophores via nitrate reductase, amongst those

ferrioxamine. Theoretically, such a system might attain high reduction rates ifpart of the

electrons went to a high-potential acceptor, in an obligatory coupled mechanism, thus

different from that described by Cakmak et al. (1987). A modelfor a plasma membrane-

bound nitrate reductase was proposed in which electrons could be given to extracellular

acceptors (Jones & Morel 1988). A Jones/Morel nitrate reductase should then reduce

ferrioxamine outside the cell, which is in contrast with the findings of Romheld &

Marschner (1983b) and Bienfait et al. (1983). However, ifthe low-potential electrons are

availableinside the cell, the system might function as a ‘Standard’reductase (see later, and

Bienfait & Luttge 1988) and at best be able to reduce ferrioxamine during or after passage

through the membrane.

Strong ferric chelatorsare mostly weak ferrous chelators, so thatboth the reductionofa

ferric chelate and of a free ferric ion result in a free ferrous ion. This is easily taken up by

the root (Kliman 1937; Chaney et al. 1972). Moreover, the divalent metal uptake capacity

is increased uponiron deficiency (Romheld et al. 1982; Young & Terry 1983).

During rhizosphere acidification, roots may also release organic compounds, probably

by leakage of the root cells (Brown & Ambler 1973; Marschner et al. 1974; Olsen & Brown

1980). These compounds may stimulate iron uptake by solubilizing soil iron (Julian et al.

1983; Hider 1986; Lehmann et al. 1987; Erich et al. 1987), or by serving as substrates for

microbialgrowth, which lowers the local O
z
leveland thus increases the lifetimeofferrous

iron.

Stimulation of proton excretion and ferric reduction go together (Landsberg 1986).

Lubberding et al. (1988) proposed the following explanation: during proton excretion,

citrate accumulates in the transfer cells and in the vacuoles of the neighbouring cells.

Citrate, via aconitase, can be isomerized to isocitrateand this drives the NADP couple to a

strongly reduced state via cytosolic isocitrate dehydrogenase (see Fig. 2); ferric reduction

can now proceed at a high rate. Aconitase is an Fe S enzyme, but its activity does not

diminish at the stage of iron deficiency where iron efficiency reactions are developed (de

Vos etal. 1986).

After uptake, ferrous ionsare transported to theprotoxylem wherethey are soon oxidized

on theirway to the shoot (Ambler et al. 1971). Citrate functionsas the ferric chelator in the

xylem (Tiffin 1972; White et al. 1981); it is already present as an earlier by-product of

proton excretion which made the iron ions available for uptake (cf. Tiffin 1986).

We do not know how mesophyll cells take up iron, but they probably use the same

system as the roots. Lemna cells reduce Fe-EDTA and this activity is increased uponiron

deficiency (Lass et al. 1986). Suspension cellsderived fromsoybean cotyledons reduce iron

in ferric-EDTA and other complexes (Cornett & Johnson 1988), and the ferrous chelator

bathophenanthroline disulphonate inhibits uptake (Sain & Johnson 1986). Some plant

species are chlorotic when grown under low-pressure sodium light, which contains little

low-wavelength light (Brown et al. 1979). The leaves contain normal amounts of iron

(Brown et al. 1979; Jolley et al. 1987) but the chloroplasts show typical symptoms ofiron

chlorosis (Pushnik et al. 1987). Ferric chelates ofthe carboxylate type are generally yellow

and thus absorb blue light; this may lead to electron transfer from the carboxylate group

to ferric, so that ferrous, C0
2

and an organic radical result. The results of Brown et al.

(1979) suggest, therefore, that mesophyll cells take up the ferrous form only, and that

species that turn chlorotic under low-pressure sodium light are not reducing ferric citrate

at the leafcell surface themselves, but depend on photoreduction instead.
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In this context, it should be mentioned that there is a growing literatureon the capacity

of cells from different tissues, including leafcells (Dhamawardhane el al. 1989), to reduce

extracellular ferricyanide. Ferricyanide reduction is also shown by tissues, such as grass

roots, that do not reduce ferric chelates like Fe-EDTA (Federico & Giartosio 1983; Qiu

et al. 1985). This activity is not influenced by the iron status of the plant and is not known

to play a role in iron uptake by any kind of plant. The possible function ofan apparently

basic capacity of cells to donateelectrons to ferricyanide (‘Standard reductase’, Bienfait

1985) is unknownand subject to speculation (Bienfait & Liittge 1988).

H. Marschner remarked (personal communication) that the need for iron by the leaf

cells must, for a large part, be fulfilledduring growth, i.e. before significant leafextension

has taken place. This means that iron which arrives via the xylem with the transpiration

stream, may be too late to avert a degree of chlorosis that is irreversible. Phloemiron may

therefore play an important role in the determination of the leaf cell’s iron status (cf.

Branton & Jacobson 1962). Iron in the phloem ofRicinus communis is continuously cycled

through the ferric and ferrous form (Maas et al. 1988) so that the unloading cell does not

need a Turbo reductase for iron uptake; but such an activity may be required at the place

of entry of iron into the phloem.

Fig. 2. Proposed mechanism offerric chelate reduction by roots using Strategy I for iron uptake. The primary

electron donor, citrate, accumulates in the cell concomitant with proton excretion.
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A reaction to iron deficiency, for which no function has yet been found, is the releaseof

flavinsby the roots ofsome species (sunflower, tabacco) (Welkie & Miller 1960; Nagaraja

& Ulrich 1966). Recently, Welkie & Miller (1988) found, in grafting experiments with

tomato and tobacco, that in those combinationsin which the roots produced flavins upon

iron deficiency, leafflavinand chlorophyll levels where highest. Unfortunately, no dataon

leafiron content were given. Some algae synthesize a flavoprotein to replace ferredoxin

upon iron deficiency (Zumft & Spiller 1971; Sandmann& Malkin 1983), and a search for

flavodoxins in the leaves of low-iron tobacco might, therefore, be worthwhile.

Strategy I: Regulation

Irondeficiency is easily recognized as leafchlorosis, and, in plants grown on water culture,
chlorosis and iron efficiency reactions develop more or less synchronously. This synchro-

nism suggests that the leaves send a signal to the roots which induces them to make extra

laterals, root hairs, organic acids, etc. (Landsberg 1986). However, roots grown from

normal potato tubers, and roots attached to small stem fragments grown on culture

solution were bothable to develop rhizodermaltransfer cells and ferric reductioncapacity

uponiron deficiency (Bienfait et al. 1987). Thus, leaves are neededfor the development of

iron-efficiency reactions. In the iron-inefficient genotypes that were tested, e.g. by grafting

experiments, the deficiency was located in the rootstock (Brown et al. 1958; Brown et al.

1971; Bell et al. 1962).

For net proton excretion, an unimpaired phloem connection between roots and leaves

(Landsberg 1986) or tuber (Bienfait et al. 1987) was necessary; the sugar supply via the

nutrient solution cannot replace the phloem connection (Landsberg 1986; cf. Bloom &

Caldwell 1988 and Bowling et al. 1978). The collectionof phloem sap from iron-deficient

bean shoots yielded more sugar in a 2-h period than from controlplants (Maas et al. 1988).

This observation suggests a stimulation of the sugar stream to the roots during iron

deficiency.

Phloem also transports iron; the shoot can therefore influence the iron status of the

roots, and consequently, its development of iron efficiency reactions.

The present data indicate that the root’s iron status, determineshow far it develops the

apparatus for iron efficiency reactions, and that thismay be influencedby the shoot via the

phloem ironconcentration; the degree of expression of these reactions is influencedby the

phloem sugar content in the shoot.

An interesting mutant of tomato plants may be used to gain more insight into the

regulation ofironefficiency reactions. This mutant is unable to develop any of the known

biochemical or morphological (Romheld & Marschner 1983a) iron efficiency reactions,

i.e. the formation of extra root hairs, development of rhizodermal transfer cells

(Landsberg 1981), proton excretion, ferric reduction (Brown et al. 1971; Brown & Ambler

1974), and is heavily chloroticwhen grownon normalsoils, ifit grows at all (Wann & Hills

1973). Only whensupplied with large amounts of ferric chelate does it turn green, prob-

ably by passive uptake via small leaks in the endodermal layer (initiation points of later-

als), and thenit is indistinguishable fromthe wild type. The recessive mutationis in a single

nuclear genecalled FER. Themutant doesnot develop transfer cells in the roots upon iron

deficiency, but makes them elsewhere at sites of heavy sugar transport (D. Kramer,

personal communication). Furthermore, roots of the iron-deficientmutant do not make

root hairs when submerged, in contrast to the iron-deficient wild-type; but they make

normal root hairs, regardless of their iron status, when they are not in the water. Thus,

the mutation leaves the ability of the plant to make the necessary structures intact,
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but iron deficiency does not turn on the relevant synthesis processes. The variety of

developmental and metabolic reactions that are affected by the FER gene indicates that

FER codes for a factor regulating the expression of several other genes.

A recent report on root membrane proteins which are controlled by the FER gene

(Bienfait 1988b). A search for their genes may lead to the identification of regulatory

sequences which, depending on the binding of a regulatory protein, control their

expression. Figure 3 shows a working hypothesis in which the FER gene product is that

regulatory protein.

Another interesting mutant is the tomato Chloronerva, which cannot make nicotiana-

mine (Fig. 4). It is chlorotic unless it is sprayed with nicotianamine. This compound is

thought to be a divalent metal iron carrier in the symplast (Fig. 5) (Scholz et al. 1988). The

mutant has its iron-efficiency reactions turned on when grown on normal iron levels and

containing a high amount of iron. Possibly, the regulatory protein of Fig. 3 cannot be

reached by ironwithout the aid of nicotianamine.

Strategy II. The grasses: phytosiderophore excretion

Grasses with iron deficiency excrete a class of compounds which are shown at the bottom

of Fig. 4 (see also Kawai et al. 1988a). These ‘phytosiderophores’ can curl round the ferric

ion, like nicotianamine around divalent metal ions (Fig. 5), and in this way protect them

against precipitation with OH~. They are closely related to nicotianamine; the basic

difference between nicotianamine and the phytosiderophores is the — NH
2

end group

which in the siderophores is replaced by —OH.

Excretion of the siderophores takes place in the morning (Takagi et al. 1984). Thus, in

both strategies mobilizationof ferric from the soil occurs at the time when transpiration

Fig. 3. Hypothesis for the regulation of iron-efficiency reactions in tomato plants. The FER gene encodes a

regulatoryprotein that can bind to common sequence elements which activate genes involved in iron-efficiency

reactions, inducing transcription. The regulatory protein can bind ferrous ions and, in doing so, changes its

conformation so that it canno longer bind to the genes’ regulatory sequences. From Bienfait (1988b).
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increases, i.e. when the chances of returning the siderophore as a ferriccomplex, or a ferric

ion solubilized by acid, are maximal. In the early morning, theroots ofiron-deficientoats

contain large amounts of vesicles covered with ribosomes; in the course of the day they

disappear or shrink away (Nishizawa & Mori 1987). This suggests that protein synthesis is

involved in the production of phytosiderophores (Mori et al. 1988) that are excreted via

exocytosis. The synthesis pathway does not suggest such an involvement, other than for

the production ofenzymes that makes the siderophores. Possibly the ribosomes synthesize
the membrane-boundsystem that is responsible for the uptake of the ferric-siderophore

complex; when this process is ready, the vesicles merge with the plasma membranes.

Fig. 4. Structures ofnicotianamine (top) and mugineic acid (bottom).

Fig. 5. Nicotianamine curlingaround a ferrous ion
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The affinity of mugineic acid (mugi =wheat, ne =root), the most studied phytosidero-

phore, for ferric ionsis not very high (Nomoto et al. 1987) compared with the siderophores

of microbial origin, however, phytosiderophores where as efficient as ferrioxamine B at

mobilizing iron from a calcareous soil (Awad et al. 1988; Takagi et al. 1988; Rdmheld &

Marschner 1989; Treeby et al. 1989; cf. Cline et al. 1983).

Induced synthesis or activation of a ferric phytosiderophore absorption system upon

iron deficiency has been shown recently (Marschner et al. 1987). The much slower uptake

of bacterial ferrated siderophores is also stimulated (Rdmheld & Marschner 1986b;

Crowley et al. 1988). Uptake of bacterial siderophore ferric complexes might be a

secondary activity of the ferric phytosiderphore carrier.

It is not understood why only grasses have evolved the bacterial-like siderophore

excretion and uptake system. It seems easy for the dicots to transfer nicotianamine into

dehydromugineic acid, through transaminationand reduction, a pathway proposed to be

taken by barley (Kawai et al. 1988b), but, as it turns out, they do not.

Strategy II: Regulation

Nothing is known about the regulation ofphytosiderophore production, excretion and of

ferric siderophore absorption. It would be interesting to isolate the PER genefromtomato

plants and see whether grasses have a comparable gene, or whether they have aregulation

system that is completely different from that in tomato plants. In oats, iron efficiency was

reported to be mainly dueto one gene (McDaniel & Brown 1982).

Strategy III. Uptake ofmicrobialsiderophores

Both dicots and grasses are capable of taking up ferric complexes of microbial sidero-

phores. A subject of debate is whether these complexes play a significant role in the iron

uptake of plants.

Cline et al. (1984) studied the effect of desferrioxamine B (DFOB), a hydroxamate

siderophore excreted by the soil mouldStreptomyces pilosus, on mobilizationand uptake
of iron from insoluble ferric hydroxide by sunflower plants. DFOB at 5 pM and higher
concentrationssignificantly ameliorated the iron status of the plants. Crowley et al. (1988)
showed that young roots ofoats actively take up iron from ferricDFOB, and that uptake

is stimulatedupon iron deficiency; 5 pM was sufficient to keep the plants green. In exper-

iments by Becker et al. (1985a), 5 pM agrobactin, a catechol siderophore produced by the

bacterium Agrobacterium tumefaciens, stimulated iron uptake by pea plants which

resulted in a significant increase in leaf chlorophyll content. On the other hand, they

reported thatpseudobactin (not a catecholor hydroxamate), produced by a Pseudomonas

species, inhibited iron uptake by the same plant (Becker et al. 1985b).
Some microbial siderophores can apparently play a significant positive role in iron

uptake by plants if present at concentrations of 5 pM or higher.

Levels ofextractable siderophore concentrations in soils have been determined; typical

values are 10“
8

to 10~
7

m (Powell et al. 1980; Bossier & Verstraete 1986). When the soil is

amended with organic nutrients, which mimic root exudation, these values may rise to

about 10“
5

m (Bossier & Verstraete 1986; Crowley et al. 1987). In extracts from rhizo-

sphere soils, levels of hydroxamate siderophores were found to be substantially higher
thanin the bulk soil (Reid et al. 1984); rhizosphere valuesof 10“

5
m can be calculated from

their data.
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It would therefore appear that at the root surface sufficiently high microbial sidero-

phore concentrations may indeed be found to affect the iron status of the plant signifi-

cantly. However, a serious problem in that siderophores may bind to soil particles which

would result in a substantially loweractual free siderophore concentration than the value

calculatedafter large volumeor repeated extraction (Powell et al. 1980).

Microbialsiderophores and Strategies I and II

The availability of microbial ferric siderophores to the Strategy I uptake system depends

on the capacity of the root to reduce their ferric complexes (Bienfait 1988a). As mentioned

before, ferric-FOB was not reduced by roots in an assay which measured the extracellular

production of ferrous ions (Romheld et al. 1983b; Bienfait et al. 1983). The author has

found(unpublished) that in order to produce greenplants, ferric FOB must be supplied at

20 |im to French beans, whereas ferric EDTA was sufficient at a concentrationof 0-3 p.M.

Thus, the reductive pathway seems to be the faster uptake system. Microbialsiderophores

might therefore inhibit iron uptake along the reductive pathway, by competing with the

phenolic and organic acid type of compounds that form reducible ferric complexes

(Bienfait et al. 1983) but that are less efficient ferric binders.

Strategy II depends on ferric solubilization by the phytosiderophores, which, in this

respect, are as effective as the microbial siderophores (Awad et al. 1988; Takagi et al. 1988;

Treeby et al. 1989). Their binding of ferric, however, is substantially weaker than that of

the known microbial siderophores (Crowley et al. 1987). Romheld & Marschner (1986b,

1989) have shown that the absorption of ferric FOB by grasses is 100- to 1000-foldslower

than that of ferric complexes of the plant’s own or related phytosiderophores. Microbial

siderophores may therefore, as with Strategy I, inhibit iron uptake by grasses through

competition with the phytosiderophores. Such an inhibition probably explains the

observations of Cline et al. (1984) with sorghum.

In conclusion, microbial siderophores may, in the free form, inhibit iron uptake along
the lines of Strategy I and II. In the ferric form they may contribute to iron uptake,

provided that the free concentrationof their ferric complexes at the root surface, in the

steady-state (a resultant of factors such as microbial siderophore excretion, water flow

driven by the respiration of the plant, reversible binding to soil particles), is sufficiently

high (10 6
m or more).

Recent reviews on iron uptake are by Romheld & Marschner (1986a), Romheld

(1987a), Chaney (1988) and Bienfait (1988a).

RHIZOBACTERIA AND PLANT DISEASE

A special kind of competition for iron in the rhizosphere is supposed to play a role in

growth promotion of crops by Pseudomonads. The Pseudomonads that are effective in

this respect excrete siderophores, including pseudobactin, with a very high affinity for

ferric ions, and it is thought that they may inhibit the growth of those deleterious

micro-organisms that cannot take up iron from the pseudomonad ferric siderophores.

Competition is assumed to be for soil iron (Kloepper et al. 1980).

It is strange, however, that no cases have ever been reported in which addition of the

growth-promoting Pseudomonads to the soil-plant system resulted in chlorosis of the

plants. This is particularly remarkable because it was found that pseudobactin inhibits

iron uptake by pea and maize plants (Becker et al. 1985b). It seems, therefore, that

competition for iron takes place remotely from the place where the iron uptake system of
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the plant is at work. A plausible site is the region where the ageing root cortex decays, and

where pathogenic fungi and bacteria can invade. Here, organic and inorganic nutrientsare

amply available, including readily mobilized iron in ferredoxin (4 Fe/mole) and phyto-

ferritin (up to 2000 Fe/mole, Laulhereet al. 1988). Pseudomonadswill, by scavenging this

iron with their siderophores, inhibit the growth of the invading pathogens (and flourish

themselves). See Fig. 6.

The role of siderophores in plant pathology has recently been treated extensively

(Swinburne 1986).

IRON DEFICIENCY

A lack ofiron results in diminishedsynthesis of iron-containing proteins such as Fe-S and

haem proteins. This leads to a low capacity of the chloroplasts to reduce NADP and to

drive the Calvin cycle for sugar production (Terry 1980). On the other hand, the synthesis

of chlorophyll involves at least two iron-requiring steps, one in the synthesis of delta-

aminolevulinate (Miller et al. 1982), and one in the closing of the cyclopentanone ring in

chlorophyll by an iron-requiring oxygenase (Chereskin & Castelfranco 1982). As aconse-

quence, an increase in iron deficiency decreasesboth the capacity to excite electrons and

the capacity to carry them on to NADP
+ . These parallel responses to iron shortage may

well be functional: if the chlorophyll concentrationremained high while the capacity of

the electron trasport chain went down, a pool of excited electrons, spread over different

carriers, would be formed during illumination, which, by reaction with 0
2,

could give rise

to OJ radicals. Such a phenomenon can be observed in algae that are illuminatedin the

absence of C0
2

so that NADPH cannot find sufficient substrate to reduce (Abeliovich

et al. 1974): superoxide dismutase is not capable of dealing with the avalancheof oxygen

radicals, it is broken down itselfand the cells die. Diminished synthesis of chlorophyll as

a response to iron deficiency is the oldest known indicator of a nutritional disorder

(Gris 1844).

Iron-deficient chloroplasts show structural abnormalities such as reduced grana

stacking (Stocking 1975; Platt-Aloia et al. 1983; see also the review by Terry & Abadia

1986).

Chlorosis by iron deficiency is commonly observed on alkaline soils with a high CaC0
3

content, and climatic conditions (cold and wet weather) can play an important role.

Fig. 6. Competition by harmful micro-organisms (HMO) and Pseudomonads (PS) for iron. Left; in the soil

(Kloepperel al. 1980; fig. from Schippers et al. 1986); the arrow with questionmark indicates the uptake offerric

siderophoreby the root. Right: in the root tissue (see text); the arrow with questionmark has disappeared.
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Calcifuge species are in general the most sensitive; this sensitivity may be a determining

factor for these species not to occur on calcareous soils (for a review see Kinzel 1982). The

main inducing factor seems to be HC0
3

"
(Boxma 1972; Kolesch et al. 1984; Mengel et al.

1984), but there may be multiple pathways leading from soil alkalinity to chlorosis. To

determine how iron deficiency comes about in a particular case it may be necessary to

examine interactionsin cationand anionmetabolismand the kinetics ofgrowth together.

Alkalinity of calcareous soils inhibits iron uptake, especially in dicots, by buffering

against rhizosphere acidification and by diminishing the rate of the ferric reductase with

its low pH optimum (Bienfait et al. 1983; Romheld & Marschner 1983b). Nevertheless, a

chlorosis on alkaline soil does not always implicate a low iron content in the leaf (the

disease can be identified when spraying with iron chelates causes regreening). Iron is then

apparently inactivated: in the cell, which is not very probable, or in the apoplast. Inactive

forms ofironprobably occur mainly in the ferric form(Machold etalA 968) and are partly

soluble, partly insoluble in 1 n HC1 (Oserkowsky 1933; Jacobson 1945). Bicarbonate

increases the solubility ofphosphates (Green wald 1945), and iron-chlorosis on calcareous

soils is often correlated with high phosphorus levels in the tissues (e.g. Miller et al. 1960;

Ao et al. 1987); efficiency in phosphorus uptake may increase sensitivity to iron chlorosis

(Brown & Jones 1975; Elliott& Lauchli 1985). Phosphate may interfere with iron trans-

port (Tiffin 1972), depending on the variety and on bicarbonate levels in the nutrient

solution (Coulombe et al. 1984). Inactivated iron may therefore partially appear in the

form of a ferric phosphate precipitate.

Ion uptake by the mesophyll cells may involve OH" or HC0
3

~

excretion, particularly

when nitrogen is present in the form of nitrate, as in the case of root cells. Apoplast

solution, which flows from the xylem at an initial pH of5-6, will thengradually turn more

alkaline as it penetrates deeper into the leaf blade (Mengel & Geurtzen 1988). At a

certain distance from the veins iron depletion by precipitation may then be so strong that

chlorosis appears (De Kock 1955). In the C4 plant sugarcane, iron chlorosis was of more

consequence for the mesophyll cells than for the bundle sheath strands (Stocking 1975;

Naik et al. 1985). If the cells reduce ferric citrate prior to absorption with a system

comparable to the Turbo reductase in the roots, high pH in the apoplast diminishes the

ferric reduction rate.

Another cause ofiron not reaching its proper place in the cells can be that other metal

ions e.g. Zn
2+

,
Mn

2+

,
Cu

2+

,

Ni2+

, compete with (probably) ferrous ions for sites

on transmembrane carriers or other molecules that function in iron transport such as

nicotianamine(metal intoxication). High levels of these metals in soils or nutrient solution

cause iron chlorosis (Foy et al. 1978).

In nitrogen-fixing legumes, iron deficiency may secondarily cause nitrogen deficiency by

inhibiting the development of nodules (O’Hara et al. 1988). Nitrogen fixation involves a

numberof iron-proteins such as leghaemoglobin and nitrogenase; it is the most expensive

way, in terms of iron, for the plant to fulfilits need for nitrogen, followed at a distance by

nitrate and ammonia(Raven 1988).

IRON TOXICITY

Iron toxicity in general

The ferric ion is practically insoluble at physiological pH values; the solubility product of

Fe(OH) 3
is 10

-39
(Biedermann & Schindler 1957). This does not mean that at pH 7 the

maximumsoluble Fe(III) concentration in water is 10“
18

M, as more or less hydroxylated
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forms of Fe(III) are, at that pH, more soluble than the free ferric ion, e.g. Fe(OH) 2

+

(maximally 10“'° m) and Fe(OH) 3 (maximally 10”105 m) (Lindsay & Schwab 1982). The

ferrous ion is more soluble but at a pH above 5 it is easily oxidized by oxygen (Stumm &

Lee 1961) to ferric. Chelators can influence the reaction (Theis & Singer 1973), particularly

those with differentaffinities for the ferric and ferrous ion, as they change the E
0 ' of the

ferric/ferrous couple. Thus, 2,2,'-bipyridyl, with a high affinity for ferrous, changes the E
0

'

to higher values than that of oxygen/water, and the ferrous-bipyridyl complex is stable in

aerobic solution. In contrast, citrate, which has a high affinity for ferric, lowers the E
0
' and

stimulates the oxidationof ferrous ions (Theis & Singer 1973).

Many compounds in the cell have a high affinity for ferric, and cellular ironhas there-

fore a tendency to become oxidized in the presence of oxygen. However, in the cell there

are also many compounds with a sufficiently low redox potential, such as ascorbate and

reduced glutathione, to be able to reduce even strong ferric complexes. In the aerobic cell

iron thereforehas a tendency to be oxidized and reduced continuously in aredox mill, thus

catalysing a net oxidation of metabolitesin quantities largely surpassing that of the iron

ions themselves.

Theoxidation of ferrous by oxygen gives rise to the formationofthe superoxide anion:

Fe(II) +0 + 05.

can dismutate to hydrogen peroxide, spontaneously at low pH, and at high pH

catalysed by superoxide dismutase (SOD);

0
2
*f0

2
T 2H

+
—*H

2
0

2
T0

2,

and hydrogen peroxide can be broken down by catalase;

H
2
0

2
+H

2
0

2
-»2H

2
0 + 0

2,

or be reduced by ascorbate or glutathione (Foyer & Halliwell 1976; Salin 1987).

In the cell, O; and H
2
0

2
are produced continuously (Fridovich 1978) and are therefore

always present at significant levels. Ferrous or its chelatesreadily react with H
2
0

2
which

results in the production of OH radicals (Fenton reaction, Walling 1975):

Fe(II) + H
2
0

2
-+ Fe(III) +OH -I-OH ~.

The OH radical is extremely reactive. In vivo its lifetimeis supposed to be very short dueto

the abundance of potential victims. A well known reaction of OH is with unsaturated

fatty acids (UFA, Kappus 1985):

UFA H + OH ->UFA + H
20,

UFA +0
2
->UFA-00,

UFA-OO + second UFA-H->UFA-OOH + second UFA .

In further reactions, which require metal ions (Fe, Cu), UFA-OOH breaks into

fragments, and the second UFA follows the same pathway as the first. In membranes,

there is always a next fatty acid. Thus, a single OH can start a chain reactionof damage in

membrane lipids which ultimately leads to leakage or breakdown of the membrane.

Moreover, oxygen radicals are often formed by electron carriers in or at membranes

(Halliwell 1987), so that the OH radical has a high probability of meeting a membrane

fatty acid as its first potential victim. Perhaps iron can also give rise to lipid peroxidation

withoutan intermediaterole for OH radicals (Minotti & Aust 1987).
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Products of iron-inducedlipid peroxidation may also have deleteriouseffects in the cell.

One such product, trans-4-hydroxynonenal, attacks sulphydryl compounds such as

reduced glutathione and cysteine (Esterbauer 1982). It binds strongly to soluble tubulin

and causes enzyme inhibitionat micromolarconcentrations (Dianzani 1982).

Forms of iron that have been shown to cause radical formationand lipid peroxidation

are Fe-ADP (Esterbauer et al. 1982; Vianelloet al. 1987) and Fe-citrate (Baker & Gebicki

1986). Care should be taken in studies with iron-containing incubations (Tadolini 1987a

and b; Tadolini& Sechi 1987). Oxygen radical formation is not exclusively caused by free

or ‘non-physiologically bound’ forms of iron, as in Fe-EDTA, Fe-citrate or Fe-ADP.

Thus, ferredoxin-Fe(II) is easily oxidized by oxygen (Misra & Fridovich 1971). Iron in

ferritin (Biemond et al. 1988) and in leghaemoglobin (Puppo & Halliwell 1988) can

generateOH radicals from 0(.

Radical formation by iron is not necessarily a harmful event; in ribonucleotide

reductase a free radical, stabilized by iron, is essential for enzyme activity (Harder &

Follman 1987); iron specifically protects corn protoplasts fromT-toxin of a pathogenic

mould (Macrae & Yoder 1987), probably by producing O;.

Recent reviews on theroleof iron as an inducerof radical formationare by Halliwell&

Gutteridge (1988) and Dunford (1987); about the effects of radicals by Halliwell (1987),

Leshem (1988) and Thompson et al. (1987).

Iron toxicity in plants

Iron toxicity in plants was first mentioned by Ponnamperuma et al. (1955). It can be

elicited in vitro by putting leaves or stems with their cut ends in imitation xylem solutions

containing ferrous sulphate (Tanaka et al. 1966; Talbot& Etherington 1987). A high iron

content ofleaves does not automatically mean that they suffer fromiron toxicity; high iron

contents may very well go together with iron chlorosis (Kinzel 1982). An essential is,

probably, whether iron enters the cells. In principle, high amounts ofiron in the apoplast

can give rise to oxygen radicals, via photoreduction of Fe-citrate or of ferric bound to

other carboxylate groups e.g. in the cell wall, followed by oxidation by oxygen. It is

questionable, however, whether the lifetimeofO] or OH outside the cell will be sufficient

to cause significant damage to the plasma membraneor entry into the cell.

It was recently reported that in homogenates of plants with high iron contents, oxygen

radicals were formed at higher rates than in preparations from control plants (Hendry

& Brocklebank 1985). However, the extracts were made by homogenizing the iron-

containing tissues as such, so thatextracellular iron precipitates in and between cell walls

could have been partly dissolved by mixing with vacuolar acids. If it is to be shown that in

a certain typeof tissue iron toxicity works via the production ofoxygen radicals in the cell,

measures have to be taken to prevent contamination ofcellular extracts with extracellular

iron during the preparation procedure.

Iron toxicity may occur in plants grown in submerged soils. Oxygen diffuses 10 000

times more slowly in water than in air, and in flooded soils the available oxygen in the

water is rapidly used by the respiratory activity of micro-organisms and roots. When

oxygen is depleted, micro-organisms start using other compounds as electronacceptors,

such as nitrate, sulphate, Fe(III) (Kamura et al. 1963; Ottow 1969), and Mn(IV). The

reduction products, sulphide, N
2

or ammonia, Mn(II) and Fe(II) accumulate in the soil

solution (Ponnamperuma 1984). Depending on the soil and the presence of other potential

electron acceptors (nitrate, Munch& Ottow 1977), the period that micro-organisms need

to lower the E to levels where Fe(II) is stabilized (< + 150 mV) may be a matter of
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days; the concentration of soluble Fe(II) can be anything up to a few millimolar

(Ponnamperuma 1984).

Uptake of iron by roots in anaerobic zones with high Fe(II) levels escapes control; in

dicots, on solubilizationand reduction of Fe(III), and in grasses, on solubilization and

uptake via a ferric-siderophore carrier.

Aerenchyma and iron plaque

Roots ofplants grown in a floodedsoil can only do so when the root tips have an adequate

supply of oxygen. Several plants can form air channels in their root cortices called

aerenchyma (Justin & Armstrong 1987). Ethylene, accumulating in the roots as a conse-

quence of flooding, is considered to be the inducing agent for aerenchyma formation

(Drew et al. 1979). Oxygen diffuses down a gradient from the above-water tissues (van

Raalte 1941; Barber et al. 1962). It is not only used by the root tips for growth and for

ATP-driven ion uptake, but it also seeps outof theair channels, via the free space, into the

rhizosphere. There it may restore more or less aerobic conditions and lead to re-oxidation

of reduced compounds, a.o. ferrous and its chelates (Armstrong 1967; Green &

Etherington 1977). Thus, in and around roots of submerged plants, a reddish-brown

plaque of ferric hydroxide deposits can often be observed as an indication of well-

functioning aerenchyma. As a result the ferrous concentrationnear the roots is lowered.

Plaque formation is thereforegenerally considered to be a defense of the plants against

iron toxicity. The capacity to oxidize ferrous ions at the roots can be a determining factor

for the distribution of plants over soils with different flooding regimes (Martin 1968;

Etherington & Thomas 1986).
The presence of a well-developed aerenchyma may be a prerequisite for plaque forma-

tion, it is not a guarantee that the soil solution bathing the cells, where ion uptake takes

place, contains a sufficiently low level of ferrous ions (e.g. Chen et al. 1980a). This level is

the result ofa number of variables andprocesses: the concentration in the soil solution, the

form in which it is present (free or chelated) (Theis & Singer 1973; Davison & Seed 1983;

Bao & Yu 1987), the local oxygen concentrationand the rate of its diffusion into the soil,

the transpiration rate of the plant which determines the flux of ferrous ions to the roots

(Jones 1971; Laan et al. 1989), and the presence of catalytic agents such as micro-

organisms (Benckiser etal. 1984; Trolldenier 1988), components of the cell wall (Yamada

& Ota 1958; Ando etal. 1983), and preformed ferrichydroxide giving rise to autocataly tic

oxidation kinetics (Tamura et al. 1976; Sung & Morgan 1980; see also Macfie & Crowder

1987). The form of iron hydroxide deposited in rice roots was reported to be y-FeOOH

(lepidocrocite) (Bacha & Hossner 1977) and a-Fe-OOH (goethite) (Chen et al. 1980b),

C0
2

favouring goethite formation (Schwertmann & Fitzpatrick 1977); lepidocrocite

stimulates ferrous oxidation (Tamura et al. 1976).
A heavy ferric hydroxide plaque might act as a filter for the soil solution before it

reaches the root cells (Howeler 1973). Compounds that may be bound are phosphate

(Jones 1975; Waldren et al. 1987; Willett et al. 1988) and heavy metal ions (St.-Cyr &

Crowder 1989; Otte et al. 1989).

Plaque formation can be studied in vitro (Taylor et al. 1984). Its iron content is often

determinedby treating roots with a strong reductant (DCB technique, Taylor & Crowder

1983). The method determines reducible cellular iron as well; with a milder technique

extracellular iron can be determined specifically (Bienfait et al. 1985; Laan et al. 1989).

Plaque formation is not the only factor which determines iron uptake in flooded soils.

Other metals such as manganeseand zinc influencethe uptake and transportofiron to the
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shoot (Verma&Tripathi 1983; VanderVorm& Van Diest 1979). Salt stress was reported

to decrease the capacity of rice plants to exclude iron at the roots (Tadano 1975). Toxins

which accumulate in the anaerobic soil such as H
2
S may interfere with root metabolism

and aerenchyma development and thereby promote iron toxicity (Tanaka et al. 1968).

The general nutritional status of a plant may strongly influence its sensitivity to iron

toxicity (Howeler 1973). Ottow et al. (1982) and Benckiser el al. (1984) proposed the

following order of events in rice: a bad nutritional status inhibits protein synthesis and

shoot growth, causing a stream of unused photosynthate to the root, where the exudation

rates are increased. High amounts of exudate stimulate microbial growth with a

concomitant heavy demandon oxygen supply, and this finally leads to loweroxygen levels

and longer lifetimesof ferrous ions. See Fig. 7.

Phytoferritin: prevention ofhigh cellular iron levels

Plantand animalcells containa defencesystem against too high free or loosely boundiron

levels. The system involves the induciblesynthesis of a hollowprotein, called ferritin, that

may contain, in its cavity, Fe(III)-oxihydroxide-phosphate to a maximal iron content of

4500 Fe/mol. (mammalian) ferritin (Harrison et al. 1987). Animal ferritinconsists of24

subunits of M
r

18 500, plant ferritin (phytoferritin) subunits are 20-50% heavier (van der

Markeral. 1983a;Sczekan&Joshi 1987; Laulhereet al. 1988). The subunits are arranged

in such a way that they surround the cavity but leaveopen six channels through which iron

can enter and leave. Much more is known about animal than about plant ferritin, but as

far as comparisons have been made, phytoferritin appeared to behave in essentially the

same way, with the exception of its synthesis pathway.

Inboth plants and animals, ferritinsynthesis is induced by increasing cellulariron levels,

but the induction mechanism is different. The difference is probably connected to the

difference in location ofthe ferritin in the cell: in animals, ferritin iscytosolic (some ferritin is

excreted as a glycosylated form), in plants it is exclusively foundin plastids (Seckbach 1982).

The ferritinsynthesis pathway, including both synthesis ofthe protein subunits and their

polymerization into the ferritin molecule, can, in animals, take place in one cellular

Fig. 7. The sequence of events that may lead to iron toxicity. Left: healthy plants, with a normal supply of

potassium, phosphorus or calcium, producing low amounts ofexudates, sustain little microbial growth, and

have a high oxidation capacity at the root. Right: plants with a deficiency in phosphorus, potassium or calcium.

High exudation rates sustain intense microbial growth and respiration so that the oxygen levels are low:

insufficient oxidation offerrous and high iron uptake rates. Modified after Ottow el al. (1982).



121IRON IN PLANTS

compartment, the cytosol. In animals, control by iron is on the translational level, i.e. in

the cytosol. The mRNA is bound and inactivated by protein in the cytosol, until free

Fe(II) binds and changes the conformation of the complex in such a way that protein

synthesis can proceed (Zahringer et al. 1976). In plants, the plastid membraneshave to be

crossed. This latter process occurs at the level of the subunits, which then combine to the

holoprotein after arrival in the plastid (van der Mark et al. 1983a). Membranecrossing is

incompatible with the animal regulation mechanism. In bean plants, iron controls at the

level of mRNA synthesis, i.e. in the nucleus (van der Mark et al. 1983b).

Ferritin takes up iron by oxidationof ferrous ions, followedby precipitation of ferric on

a ferric-hydroxide-phosphate body in the protein cavity. Two mechanisms have been

proposed which probably operate together.

1. Binding of two ferrous ions to the protein on neighbouring sites in one of the

channels; oxygen may thenattack. The resulting ferric hydroxide precipitates on the core

(Crichton & Roman 1978). No oxygen radicals are produced outside the ferritin molecule.

2. Binding of ferrous to the core surface which catalyses its oxidation, followed by

precipitation on the spot (Harrison et al. 1974).

Mechanism (1) supposedly prevails in ferritinwith low iron content; mechanism (2) in

ferritin with high ironcontent (Harrison et al. 1987).

For iron release, several mechanisms have been proposed. The best documented case is

that of the mould Phycomyces, the spores of which contain ferritin. After germination,

the protein shell is broken down and iron apparently dissolves. The extent of ferritin

breakdown depends on the iron status of the mould, and feedback control was proposed

to be realized through iron sensitivity of a specific protease (David 1974). Reduced flavins

can release ferritin iron by reduction(Sirivech et al. 1974), and this was proposed to occur

in mammaliantissues such as liver (Crichton et al. 1975). However, reduced flavins are

rapidly oxidized by oxygen, and in leaves ofplants, where O
z
levels are higher thanin liver,

such a mechanism is not plausible. Bienfait& van den Briel (1980) proposed reductive

release by the monodehydroascorbate radical; superoxide might do the same (Biemond

et al. 1988). However, there is no evidence yet concerning whether phytoferritin in vivo

releases its iron through a reductive or a proteolytic mechanism, or both.

Fig. 8. Ferritin as a buffer for cellular iron. Ferrous ions enter and are oxidized within the protein shell, where

they precipitate. Iron can be mobilized by the breakdown of the protein shell or by reduction of the ferric

oxihydroxide core. Vertical axis=cellular iron level.
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Seckbach (1969) tricked Xanthium leaves in to making large amounts offerritin, by first

putting them on low iron and then supplying iron so that the plants took it up in large

quantities. Until now, nobody has examined the role ferritin might play in resistance

against flooding-induced iron toxicity.

Figure 8 shows how ferritin is thought to buffer iron levels in the cell.

CONCLUSION

The interesting aspect of plant iron metabolism is that the handling of iron requires so

many and so differentactivities. Following the course ofiron into and through the plant is

a journey through the landscape of plant physiology. The most promising area seems to be

the regulation of iron efficiency reactions, and the relationship between the Strategies.

What caused the grasses and the other higher plants to evolve such different iron uptake

systems? Do they have anything in common in the control of their development and

activity? Have plants developed anything to profit from the microbial activity at their

roots, such as an inducible translocator for a microbial siderophore?
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