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The effect of temperature on
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A brief review ofthe study of embryonic developmentin relation to temperature
in Zygoptera is presented. Such concepts as the threshold, the minimum effective

temperature limit, the upper effective temperature limit, the limits oftolerance for

development, the developmental units and the mathematical formulations of the

velocity curve are analyzed. A brief discussion of the influence of temperature on

the development of Enallagma boreale Selys, E. ebrium (Hagen), E. verna/e

Gloyd, E. hageni (Walsh) and Ischnura verticalis (Say) (Zygoptera: Coenagrionidae)
in the lower Laurentides ofQuebec is also presented.

INTRODUCTION

The environment of living organisms is the summation of all conditions sur-

rounding them such as weather, food, other animals and a place in which to live

(ANDREWARTHA & BIRCH, 1954). Poikilothermic animals are particularly
affected by weather which may be defined as the conditionofthe atmosphere at a

particular time and place in terms of temperature, moisture, pressure, and so on.

Of these sub-components of weather, temperature has received the most attention,

attracting biologists at least as far back as 1734 when Réaumur(BELEHRADEK,

1935) recognized a relationship between temperatureand the activities of organisms.
More recently, the effects of temperature on different activities ofpoikilothermic
animals have been reviewed by LOTKA (1925), UVAROV (1931), FRY (1947),

ALLEE et al. (1949), ANDREWARTHA & BIRCH (1954) and BURSELL

(1974).
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In this paper, the influenceof temperature on the embryonic development of

Zygoptera is discussed especially with regard to two mathematicalmodels that

have been used to describe the relationship between temperature and rate of

development, and in relation to the ecological strategies adopted by five coenagrionid

species: Enallagma boreale Selys, E. vernale Gloyd, E. hageni (Walsh), E.

ebrium(Hagen) and Ischnura verticalis (Say).

EMBRYONIC DEVELOPMENT IN ODONATA

According to ANDO (1962), CORBET (1962, 1980) and CORBET et al.

(1960), egg development in Odonata is either direct or delayed. The duration of

direct development has been shown to vary between5 and 40 days (JOHANNSEN

& BUTT, 1941; ASAHINA, 1950; GARDNER, 1950, 1951a, 1951b, 1953,

1954, 1955; BICK, 1951; CORBET, 1955, 1957; GARDNER & MACNEILL,

1950; HODGKIN & WATSON, 1958; AGUESSE, 1959; ANDERSON, 1972).

In the case of delayed development two types can be recognized: The first one is

represented by eggs laid during the summer and developing to full-grown embryos

before the onset of winter (CORBET, 1956;ANDO, 1962; TA1, 1967; BOEHMS,

1971; SAWCHYN & CHURCH, 1973; INGRAM, 1976); the second one is

represented by eggs laid in late summer or early autumn and overwintering in a

stage prior to katatrepsis (ANDO, 1962; SAWCHYN & GILLOT, 1974; DEACON,

1981). In the second indirect type, development is completed after a period of 80

to 230 days (CORBET, 1980).

Many authors such as BALFOUR-BROWNE (1909), LAMB (1925), KRULL

(1929), LIEFT1NCK (1933), GRIEVE (1937), MARTIN (1939), BICK (1951),

KORMONDY (1959), CORBET (1962, 1980), M1YAKAWA (1971), and BATH

(1890) have shown that the incubation period for embryonic development varies

greatly not only in different species but also in the same species with eggs laid at

the same time. The incubation period of the eggs of some species was also

observed to vary in relation to the time of year at which they were laid (LUCAS,

1900; GARDNER, 1950, 1951b; ROBERT, 1958; CORBET, 1962); for example,

eggs laid in mid-summer hatched directly while those of the same species laid in

the autumn overwintered.

INFLUENCE OF TEMPERATURE ON

EGG DEVELOPMENT IN ODONATA

Temperature is generally recognized by odonatologists as the main factor

influencing the rate of embryonic development. Nevertheless, supporting data

are scarce even though research on the influenceof temperature on incubation

and embryogenesis datesback to about a century ago. BEUTENMULLER (1890)
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was one of the first to mention the influence of temperatureon egg development,
but like the great majority of earlier investigators (WARREN, 1915; WILSON,

1917-1918; KRULL, 1929; KENNEDY, 1936; and GRIEVE, 1937, for example,
withCALVERT (1929) and ASAH1NA (1950) as exceptions) he did not mention

the temperatures prevailing during his experiments. Since 1962, research on egg

development, performed under various conditions of temperature, has beenreported

by GARDNER (1951b), CORBET (1956, 1957, 1962), FISCHER (1958),

HODGKIN & WATSON (1958), AGUESSE (1959), SCHALLER (1960, 1961,

1962, 1968, 1972), CHUTTER (1961), ZEHRING et al. (1962), GOWER &

KORMONDY (1963), LUTZ & PITTMAN (1970), SCHALLER & MOUZE

(1970), BOEHMS (1971), SAWCHYN & CHURCH (1973), SAWCHYN &

GILLOTT (1974, 1975), DEACON (1975, 1979, 1981), INGRAM & JENNER

(1976), HASSAN (1977), TENNESSEN & MURRAY (1978). A program to

examine the influence of temperature on the rate of development of zygopteran

eggs was initiatedby RIVARD et al. (1975). This will be discussed later in this

paper. As a result of these studies we are able to make some generalizations on

such phenomena as the lethal limits to the temperature range, the pattern of

increase in development rate with temperature, the threshold temperature for

reactivation of diapause eggs, and the effects of temperatures to which eggs are

submitted during embryogenesis on the types of larval development that can be

observed (MASSEAU & PILON, 1982a, 1982b).

The general form of the temperature-development curve

There are upper and lower limits to the temperature-development curve, above

and below which development does not occur (Fig. 1A). Between these lower

and upper limits the duration of complete development decreases generally with

an increase in temperature (Fig. 1A, C-D). The reciprocal of the duration of

development multiplied by 100 is an expression of the rate, speed or velocity of

development (Fig. 1 A, E-H), which increases with a rise of temperature up to a

maximum level (Fig. 1A, G) before decreasing near the upper effective tempera-
ture limit (Fig. 1A, G-H). When taking into consideration not only the velocity
of development (Fig. 1A) but also the percentage of individuals accomplishing
their development successfully (Fig. IB), the concept of optimum range can be

defined as the “temperature range at which the relatively greatest percentage of

individuals accomplished their development within the relatively shortest period’
’

(PEAIRS, 1927; UVAROV, 1931). E. boreale was found to have its optimum

range situated between 20° and 27.5°C (RIVARD et al., 1975), E. ebrium

between 22.5° and 30°C (PILON, 1982), E. vernale between 22.5° and 30°C

(PILON, 1982), E. hageni between 17.5° and 30°C (MASSEAU & PILON,

1982a) and I. verticalis between 22.5° and 32.5°C (FRANCH1N1 & PILON,

1983) (Table I).

HODSON & AL RAWY (1956) developed theirconcept of hatching-survival
threshold when they noticed that eggs incubated at temperatures outside the

optimum range, although successfully completing their embryonic development

had a high larval mortality rate. The fact that temperatures outside the optimum
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range could have an unfavorable influence on later development could be impor-

tant in the ecology of Odonata, but no such data exist in the odonatological
literature. However, from preliminary rearing of Libellula julia Uhler in our lab-

oratory we believe that this effect occurs at temperatures above 30°C.

Mathematicalformulationofthe velocity curve

DAVIDSON (1942, 1944) proposed the use of the logistic curve to analyze

temperature-speed of development data in preference to other formulae, and

ANDREWARTHA & BIRCH (1954) established use of this model in spite of

some drawbacks in its use. The formulation is the well known:

100/y = K/l +e
abx

where y represents the timerequired for complete development at temperature x;

K is a constant representing the upper asymptote; e = 2.718282; a indicates the

relative position of the origin of the curve on the abscissa; and b is a constant

representing the degree of acceleration of development.

PRADHAN (1946) proposed a somewhat different formulationto

describe the effect of temperature on the velocity of development:

Y = Yo e'
1/2axZ

where Y is the developmental index (100/y) at temperature t; Yo, the highest

value of the developmental index; e = 2.718282; a, is a retardation constant

(negative acceleration); and x = T-t where T is the temperature corresponding to

Yo and t the temperature corresponding to Y.

An analysis of the dispersion of the residuals around the zero residual value

when the formulae proposed by DAVIDSON and PRADHAN (Fig. 2) are applied
to our data for I. verticalis indicates that DAVIDSON’s formulation is somewhat

superior to PRADHAN’s. The same conclusions are to be drawn when compar-

ing the two formulations in the case of E. boreale, E. ebrium, E. vernale and E.

hageni.

Thresholdof development

This is the physiological zero of earlier workers and can be defined according

to PEAIRS (1927) and UVAROV (1931) “as the temperature at which, on the

descending scale, the development definitely ceases, and at which, on the ascend-

ing scale, the development is initiated” (Fig/ 1A). This, however, does not

correspond to the lower lethal limit as described by SALT (1961).

The experimental determinationof this thresholdis difficult because it involves

a small amount of development at a very slow rate (UVAROV, 1931). Most

authors have evaded this difficulty by proposing various indirect methods to

calculate it. PEAIRS (1927), SHELFORD (1927), BODENHEIMER (1928),

DAVIDSON (1944) and VARLEY ef al. (1973) proposed as the theoretical

threshold of development the point at which the extrapolated straight line portion
of the temperature-velocity curve intersects the temperature axis. An alternative

method is to extrapolate the velocity curve allowing for deviation from the
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Fig. I. Theoretical effect of temperatureon the duration and velocity of development(A), and on the

mortality rate of a development stage (B) of an hypothetical poikilothermic organism.
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straight line format (dotted line in Fig. 1A). Clearly, deviationof the curve near

its lower end from the straight line has an important bearing on the position of the

threshold of development on the temperature axis (PEAIRS, 1927; SHELFORD,

1927; UVAROV, 1931; DAVIDSON, 1942, 1944; PRADHAN, 1946; ANDRE-

WARTHA & BIRCH, 1954; VARLEY et a/., 1973) and curve fitting by eye,

taking into account the lower deviation could be a better approximation. This is

probably so since residuals (Fig. 2) indicate that the formulationsof DAVIDSON

(1942) and PRADHAN (1946) do not provide a good fit. The values for thresh-

old temperature given in Table I were estimated in this way.

Fig. 2. Dispersion of residuals around the zero value in Ischnura verticalis (Hagen) according to

Davidson’s and Pradhan’s formulations.
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Minimum effective temperature limit

This is the temperature at which complete development is accomplished (Fig.
1 A) and below which development is only partial (PARENT, 1969). This corres-

ponds to the developmental-hatching thresholdof JOHNSON(1940) and BURSELL

(1974). The minimumeffective temperature, using TROTTIER’s (1971) method,
has been calculated to be 12.48°, 12.40°, 11.98°, 9.34° and 11.26°C in the case

of E. boreale, E. ebrium, E. vernale, E. hageni and I. verticalis respectively

(TableI). It would appear that the thresholds calculatedor estimated by different

authors in the odonatological literature are in fact minimum effective temperature
limits. Surprisingly few such data, in fact, exist. FISCHER (1958) estimated the

threshold to be near 14°C for Lestes sponsa (Hansemann) eggs collected in

nature. RIVARD et al. (1975) calculated this threshold to be 10°C for E. boreale

eggs obtained under laboratory conditions. Under similarexperimental conditions,
this threshold was determinedto be at 12.15°C and 12.71°C for E. ebriumand E.

vernale eggs respectively by PILON (1982). MASSEAU & PILON (1982a) and

FRANCHINI & PILON (1983) found this threshold to be 9.19°C in E. hageni

eggs and 12.4°C in I. verticalis eggs. DEACON (1975) indicated that eggs of

Leucorrhinia intacta Hagen died when incubated at temperatures below 13°C.

DEACON (1979) also noted that embryos ofXanthocnemiszealandica(McLachlan)
and Procordulia grayi (Selys) died at temperatures below 9 - 12°C.

Species Threshold Minimum Optimum Upper Developmental

effective range effective units

temperature temperature (day-degrees)

limit limit

Enallagma boreale Selys 7.5 12.48 20.0-27.5 27.5 231.92

Enallagma ebrium (Hagen) 5.0 12.40 22.5-30.0 32.5 383.44

Enallagma vernale Cloyd 5.0 11.98 22.5-30.0 32.5 399.80

Enallagma hageni(Walsh) 2.0 9.34 17.5-30.0 32.5 390.30

Ischnura verticalis (Say) 2.0 11.26 22.5-32.5 35.0 311.38

Upper limits

Earlier workers recognized an upper temperature limit of development and an

upper lethal limit. The upper temperature limit could be defined as the highest

temperature at which complete development is accomplished (Fig. 1A) and

above which only partial development is fulfilled. This is not to be confused with

the critical thermal maximum used to measure the sensitivity of aquatic fauna,
for example to elevated temperatures (MARTIN & GENTRY, 1974; GARTEN

& GENTRY, 1976; GENTRY etal., 1976; MARTIN etal., 1976).

Table I

Some bioclimatic characteristics of Enallagma boreale, E. ebrium, E. vemale, E. hageni and

Ischnura verticalis. (All temperatures expressed in °C and thresholds calculated with the curve

fitting method taking into consideration the lower deviation of the velocity curve).

Species Threshold Minimum

effective

temperature

limit

Optimum

range

Upper
effective

temperature

limit

Developmental
units

(day-degrees)

Enallagma boreale Selys 7.5 . 12.48 20.0-27.5 27.5 231.92

Enallagma ebrium (Hagen) 5.0 12.40 22.5-30.0 32.5 383.44

Enallagma vcrnalc Gloyd 5.0 11.98 22.5-30.0 32.5 399.80

Enallagma hageni (Walsh) 2.0 9.34 17.5-30.0 32.5 390.30

Ischnura verticalis (Say) 2.0 11.26 22.5-32.5 35.0 311.38
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The upper lethallimit on the other hand is defined as the temperatureat which,

on the ascending scale, development ceases irreversibly and death occurs due to

denaturationof proteins (MAYNARD SMITH, 1957), melting of cellular lipids

and phosphatides (HOUSE eta/., 1958) or irreversiblephysiological disturbances.

UVAROV (1931) was doubtful whether there was a distinction between the

upper temperature limitof development and the upper lethal limit but it seems

that there is a narrow range between the upper temperature limit ofdevelopment
where the organism is still viable and the upper lethal limit which comes grad-

ually as the metabolic balance is more and more upset (BURSELL, 1974).

The upper temperature limit has been estimated to be between 26° and 30°C in

S. vicinum, a species characterized by eggs with delayed development (BOEHMS,

1971). RIVARD ef al. (1975), P1LON (1982), MASSEAU & P1LON (1982a)

and FRANCHINI & PILON (1983), investigating species with eggs developing

directly, estimated this limit to be above 27.5°C in E. boreale; above 32.5°C in

E. ebrium, E. vernale and E. hageni; above 35°C in I. verticalis (Table I).

Temperature summation

Botanists were the first to develop this theory with regard to the relation

between temperature and development. Applied entomologists have long been

interested in this approach because it allowed the prediction of events, such as

date of emergence or the duration of a given stage of a pest species. SIMPSON

(1903) was among the first to develop the theory of thermal constant expressed in

units of “day-degrees” from the hyperbola (Fig. 1A, C-D) according to which

the completion of a given stage of an organism’s development required an

accumulationof a definite amount ofheatenergy above a threshold of development.

The development ofthe reciprocal ofthe hyperbola helped to simplify the calcula-

tions later on. The classical papers of GLENN (1922, 1931) and SHELFORD

(1927, 1929) on the codling moth illustrated very well the practical application of

such a theory in applied entomology and in spite of criticisms by DAVIDSON

(1944) and LIN ef al. (1954), this is still much in use.

TROTTIER (1971), working on the life-cycle of Anax junius Drury stated that

an accurate knowledge of the effect of temperature on the rate of development is

a necessary step towards an understanding of the ecology of this species. Based

on the reciprocal of the hyperbolic equation, he developed a method to determine

the minimal accumulated temperature in excess of the threshold required for

development (temperature summation).

PILON (1982) demonstrated that eggs of E. ebrium required 203.22 day-

degrees above 12.1°C to complete their development to hatching and eggs of E.

vernale 179.87 day-degrees above 12.7°C; MASSEAU & PILON (1982a) calcu-

lated that eggs of E. hageni required 213.4 day-degrees above 9.2°C while eggs

of I. verticalis required 141.34 day-degrees above 12.4°C (FRANCHINI &

PILON, 1983). However, differentmethods were used by these authors to deter-

mine the threshold of development so that comparisons between species with

respect to developmental units required to complete development are difficult.

Based on what appeared a more appropriate method to calculate the threshold
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and using TROTTIER’s (1971) method to calculate the developmental units, we

obtained the comparative values shown in Table I.

Egg stage and seasonal regulation in Odonata

In the temperate zone, seasonal regulation is the end result of a process of

adaptation by which a species is able to correlate its life cycle with the seasons of

the year so that the non-hardy stages are present at the time when conditions are

favorable and the hardy life stages present when unfavorable conditions are

occurring. Under natural conditions Odonata species vary greatly with regard to

seasonal succession and their hardy life stage.

In species in which the egg stage is adapted to survive the unfavourable

period, some overwinter as full grown embryos, others in a stage prior to katatrepsis

(ANDO, 1962). In either case diapause is obligatory (CORBET, 1956;SAWCHYN

& CHURCH, 1973). At 10°C diapause development seems to be completed in 15

weeks in Lestes sponsa (CORBET, 1956), but LAPLANTE (1975) found that at

-10°C diapause development could be completed in only 14 days in Lestes

unguiculatus Hagen, L. forcipatus Rambur and L. congener Hagen, and in 21

days in L. disjunctus Selys. This seems to indicate that, as reported by

ANDREWARTHA (1952) and CORBET (1956), diapause development pro-

ceeds most rapidly at lower temperatures. In such cases, diapause development
could be completed by mid-winter and eggs then remain in hibernation until

spring temperatures rise again above the threshold for development. This repre-

sents one type ofseasonal regulation occurring especially in species which emerge

in late summer.

Another type of seasonal pattern is illustrated by species which are better fitted

to avoid or survive the inclement weather conditions in the adult stage. Some

species migrate, as Anax junius Drury in Canada (WALKER, 1958), or hiber-

nate as reported by TILLYARD (1917), NEEDHAM & HEY WOOD (1929) and

CORBET (1962).

Species hibernating in the larval stage represent a further type of seasonal

regulation. In this type, some species overwinter in the final larval instar (CORBET,

1954, 1964) and others in larval instars other than the final one. These two

categories were referred to as spring and summer species by CORBET (1954).

Laurentian summer coenagrionids

In the southern range of the northern temperate zone where the “Station de

Biologic de 1’Universite de Montreal” is situated (46°N, 74°W), unfavorable

weather conditions prevail from late November to early May. During this period
the surfaces of the lakes are covered with ice. In early May temperature rises

sharply and favorable conditions occur for about 150 days (temperature of water

near surface at or above 10°C) (Fig. 3). Surface water temperature is above 15°C

for about 100 days, above 20°C for about 62 days, and above 25 C for about 44

days, the most favorable conditions occurring between mid-June and mid-August

at this latitude.
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Enallagma ebrium and E. boreale are summer species with synchronized emer-

gence (KORMONDY & GOWER, 1965; LEBUIS & PILON, 1976; our own

personal data). LEBUIS & PILON (1976) classified E. hageni as a summer

species with asynchronized emergence as are I. verticalis (KORMONDY &

GOWER, 1965; LEBUIS & PILON, 1976) and E. veraa/e (personal observations)

(Fig. 3). Given the environmental temperatures, eggs of all species laid at any

Fig. 3. A. Average water temperature of a typical lake at the biological Station of the University de

Montreal (46°N, 74°W); B-F. Average emergence curves of E.

ebrium,

Enallagma boreale, E. vernale,

over a two-year period at the Station and in the surrounding

lower Laurentides.

E. hageniand Ischnura verticalis
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time during the emergence period will complete development well before winter.

However, it then becomes important that a cold-hardy larval instar be attained

before winter.

Laboratory research on larval stages of Zygopteran species have shown that E.

boreale probably overwinters in the F-2 larval instar, E. ebrium and E. vernale in

the F-l, and E. hageni in the F-2 and F-3 larval instars (RIVARD et a/., 1975;

FONTAINE, 1977; LEBEUF & PILON, 1977; RIVARD & P1LON, 1977,

1978; PILON & RIVARD, 1979; PILON & FONTAINE, 1980; MASSEAU &

PILON, 1982a, 1982b; PILON, 1982; PILON & MASSEAU, 1983). I. verticalis

overwinters in many more larval instars (FRANCHINI, 1979). These findings

are in general agreement with the field data ofKORMONDY & GOWER (1965)

and PAULSON & JENNER (1971) who indicate that coenagrionid larvae over-

winter in many larval instars but with peaks in many species at the F-2 and F-1

larval instars.

In the deductions that follow we make the following assumptions: 1. That

these instars in which larvae normally overwinter are the only cold-hardy instars

in the species’ life cycle; 2. That the day-degree summation for completion of

larval development up to the earliest cold-hardy instar, obtained in the laboratory

at one temperature (usually 25°C) and one photoperiod (usually 14 h light; 10 h

dark), is a thermal constant for larval development in that species; 3. That the

threshold for development of larvae is the same as that for eggs of the same

species (Table 1). Given these assumptions we can predict whether larvae will

attain the cold-hardy instar in the field.

For example, FONTAINE & PILON (1979) have shown that 28% of the

larvae of Enallagma ebrium reared in the laboratory at 25°C have a type of

development with ten larval instars, 66% have an 11-instar larval stage, and 6%

have a 12-instar larval stage, requiring respectively 68.8, 86.5, and 115.2 days

to develop to the F-l instar. Assumed thermalconstants, above the 5.0°C thresh-

old determined for eggs of this species, for these 3 types of larval development to

the F-l instar are, therefore, 1,376, 1,730, and 2,304 day-degrees respectively.

We can now predict that larvae of the 10-instar developmental type originating

from eggs laid on July 9 would not attain the F-l larval instar before winter,

needing another 119 day-degrees. In the case of the 11-instar type of development,

only individuals hatched from eggs laid on June 20 could complete their pre-

overwintering development on October 13. Larvae from eggs laid on June 30 and

July 10 would lack 246 and 449 day-degrees. Larvae of the 12-instar type of

development could not complete their normal prewinter development.

In the case of E. boreale we predict that larvae originating from eggs laid on

June 10 and 24 would complete their pre-winter development on September 6

and September 26 respectively, but larvae hatching from eggs laid on July 24

could not attain the F-2 larval instar by the end of October.

E. vernale is an occasional species at the Biological Station of the Université

de Montréal (PILON & LEBUIS, 1976). Based on the water temperature of the

lakes and the bioclimatic characteristics of the species, we predict that it is

possible for E. vemale to develop to the F-l larval stage before winter at the
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station since the 12-instar type of development requires 1,872.5 day-degrees, the

13-instar type of development 2,082 day-degrees and the 14-instar type of devel-

opment 2,117 day-degrees. At the Station, from June 1 to October 30, 2,137

day-degrees are available for development with a threshold of 5°C.

In the case of E. hageni, MASSEAU & P1LON (1982b) estimated in the

laboratory that0.5%of the larval population was ofthe 9-instar type ofdevelopment,
24.7% of the 10-instar type of development, 57.4% of the 11-instar type of

development, 16.8% of the 12-instar type of development and 0.6% of the

13-instar type of development. According to the available data and based on a

threshold of 2°C, only larvae hatched from eggs laid before August could com-

plete their development to the F-2 or F-3 hardy larval stage before winter in the

types of development with 9, 10, and 11 instars.

I. verticalis is a versatile species occurring in many types ofhabitat from early

to late summer. Assuming a threshold of 2°C, larvae from eggs laid between

June 7 and August 17 could overwinter in F, F-l and F-2 in the 9-instar type of

development, in F to F-4 in type 10, in F to F-4 in type 11, in F to F-6 in type 12.

In the case of larvae of type 9 originating from eggs laid on June 7, an abnor-

mally warm summer could produce a second generation as suggested by
FRANCHINI (1979).

SUMMARY

An analysis ofthe limits of tolerance for egg development in Odonata has been

discussed in relation to two of the mathematical formulations available in the

biological literature. Thresholds and limits are discussed in relation to the find-

ings of RIVARD et al. (1975), MASSEAU & PILON (1982a), PILON (1982),

and FRANCHINI & PILON (1983) on the egg development of E. boreale, E.

ebrium, E. hageni, E. vernale and I. verticalis. From this review new thresholds

for each species and new values for temperature summation are proposed.

A speculative discussion on the development of larval stages in five summer

Coenagrionids in the Lower Laurentides is presented. Egg development in these

species takes place at the time when optimal weather conditions prevail in the

field. However, a certain percentage of the larval population is probably not able

to develop to the overwintering stage depending on the type of larval develop-

ment to which they belong.

As pointed out by TROTTIER (1971) an accurate knowledge of the effect of

temperature on the rate of development of the different stages of Odonata is a
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necessary step towards an understanding of their ecology. This present paper

simply stresses the importance of this statement and the need for further

investigations.
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