New phylogenetic systematic methodologies are presented and the terms ‘neapomorphy’, ‘coapomorphy’, ‘exapomorphy’ and ‘apophyletic’ introduced. Results are presented in sorted character state matrices which show the outcome of character state evaluation while depicting phylogenetic arrangement. Higher classification, phylogeny, and biogeography of Anisoptera are reviewed and keys provided for superfamilies and families. The pattern of anisopteroid neapomorphy supports the superfamily arrangement proposed by F.L. CARLE (1986, Odonatologica 15: 275- -326), while indicating polyphyly for Cordulegasteroidea [sic] of EC. FRASER (1957, A reclassification of the order Odonata, R. Zool. Soc NSW, Sydney) and both “Neanisoptera”and“Petaluroidea”ofH.-K. PFAU (1991, Adv. Odonalol. 5: 109-141). Paraphyletic groupings include Aeschnidae [sic] of R.J. TILLYARD (1917, The biology of dragonflies, Cambridge Univ. Press), and Cordulegastroidea of D. A.L. DAY 1ES (1981, Soc. int. odonatol. rapid Comm. 3: 1-60). Nothomacromia nom.n. is proposed as a replacement for Pseudomacromia Carle & Wighton, 1990, nec. Pseudomacromia Kirby, 1890. Congruence between phylogenetic and biogeographic patterns indicates two or more distinct mesozoic utilizations of a trans-pangaeian montane dispersal route. Incorrect association of Neopetalia with austropetaliids for the past 137 years has obscured the gondwanian origin and subsequent radiation of non-cordulegastrid Libelluloidea, a process which began at least 140 million years ago on the now frozen continent of Antarctica. – Chlorogomphid evolution was largely influenced by unknown vicariant events related to the combined forces of mountain building and rapid drift of India toward the equator, coupled with a 40-60 million year insular isolation. insular isolation. Classification is revised as follows: Chlorogomphidae: Chloropetaliinae subfam.n.: (Chloropetaliini trib. n.): Chloropetalia gen.n. [type C. selysi Fraser]; – Chlorogomphinae comb, n.: (Eorogomphini trib. n.): Eorogomphus gen.n. [type O. preciosus Fraser]; (Sinorogomphini trib. n.); Sinorogomphus gen.n. [type C. nasutus Needham]; (Chlorogomphini comb, n.): Neorogomphus gen.n. [type C. fraseri St. Quentin], Indorogomphus gen.n. [type O. xanthoptera Fraser], Orogomphus Selys, Aurorachlorus gen.n. [type C. papilio Ris], Chlorogomphus Selys. – Early synthemistid evolution was largely influenced by unknown vicariant events in Antarctica related to the combined forces of mountain building and drift of Antarctica-Australia toward the south pole, coupled with a 60 million year isolation. Resulting selective pressures produced the largest set of congruent neapomorphy and exapomorphy known in the Anisoptera. Classification is revised as follows: Synthemistidae: (Synthemiopsini trib.n.): Synthemiopsis Tillyard; (Palaeosynthemistini trib.n.): Palaeosynthemis Forster, Archaeosynthemis gen.n. [type: S. leachii Selys]; (Synthemistini comb.n.): Synthemis Selys, Parasynthemis gen.n. [type S. regina Selys], Calesynthemis gen.n. [type S. miranda Selys]; (Eusythemistini trib.n.): Austrosynthemis gen.n. [type: S. cyanitincta Tillyard], Choristhemis Tillyard, Eusynthemis Forster.


CC BY-SA 4.0 NL ("Naamsvermelding-GelijkDelen")

Societas Internationalis Odonatologica

F.L. Carle. (1995). Evolution, taxonomy, and biogeography of ancient Gondwanian libelluloides, with comments on anisopteroid evolution and phylogenetic systematics (Anisoptera: Libelluloidea). Odonatologica, 24(4), 383–424.